Implementation of a Hybrid Electro-Active Actuated Morphing Wing in Wind Tunnel

Article Preview

Abstract:

Amongst current aircraft research topics, morphing wing is of great interest for improving the aerodynamic performance. A morphing wing prototype has been designed for wind tunnel experiments. The rear part of the wing - corresponding to the retracted flap - is actuated via a hybrid actuation system using both low frequency camber control and a high frequency vibrating trailing edge. The camber is modified via surface embedded shape memory alloys. The trailing edge vibrates thanks to piezoelectric macro-fiber composites. The actuated camber, amplitude and frequency ranges are characterized. To accurately control the camber, six independent shape memory alloy wires are controlled through nested closed-loops. A significant reduction in power consumption is possible via this control strategy. The effects on flow via morphing have been measured during wind tunnel experiments. This low scale mock-up aims to demonstrate the hybrid morphing concept, according to actuator capabilities point of view as well as aerodynamic performance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

85-91

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S Barbarino, E I Saavedra Flores, R M Ajaj, I Dayyani, and M I Friswell. A review on shape memory alloys with applications to morphing aircraft. Smart Materials and Structures, 23(6): 063001, (2014).

DOI: 10.1088/0964-1726/23/6/063001

Google Scholar

[2] Silvestro Barbarino, Onur Bilgen, Rafic M Ajaj, Michael I Friswell, and Daniel J Inman. A review of morphing aircraft. Journal of Intelligent Material Systems and Structures, 22(9): 823-877, (2011).

DOI: 10.1177/1045389x11414084

Google Scholar

[3] M. Chinaud, J.F. Rouchon, E. Duhayon, J. Scheller, S. Cazin, M. Marchal, and M. Braza. Trailing-edge dynamics and morphing of a deformable flat plate at high reynolds number by time-resolved {PIV}. Journal of Fluids and Structures, 47: 41 - 54, 2014. Special Issue on Unsteady Separation in Fluid-Structure Interaction-l.

DOI: 10.1016/j.jfluidstructs.2014.02.007

Google Scholar

[4] Ignazio Dimino, Monica Ciminello, Antonio Concilio, Rosario Pecora, Francesco Amoroso, Marco Magnifico, Martin Schueller, Andre Gratias, Avner Volovick, and Lior Zivan. Smart In- telligent Aircraft Structures (SARISTU): Proceedings of the Final Project Conference, chapter Distributed Actuation and Control of a Morphing Wing Trailing Edge, pages 171-186. Springer International Publishing, Cham, (2016).

DOI: 10.1007/978-3-319-22413-8_9

Google Scholar

[5] Jaronie Mohd Jani, Martin Leary, Aleksandar Subic, and Mark A Gibson. A review of shape memory alloy research, applications and opportunities. Materials & Design, 56: 1078-1113, (2014).

DOI: 10.1016/j.matdes.2013.11.084

Google Scholar

[6] Sridhar Kota, Peter Flick, and Fayette Collier. Flight testing of the FlexFoiltm adaptive compliant trailing edge. In 54th AIAA Aerospace Sciences Meeting, page 0036, (2016).

DOI: 10.2514/6.2016-0036

Google Scholar

[7] Christian Lexcellent. Shape-memory alloys handbook. John Wiley & Sons, (2013).

Google Scholar

[8] Zhoujie Lyu and Joaquim R. R. A. Martins. Aerodynamic shape optimization of an adaptive morphing trailing edge wing. Journal of Aircraft, 52: 1951–1970, November (2015).

DOI: 10.2514/1.c033116

Google Scholar

[9] Alexander M Pankonien, Cassio T Faria, and Daniel J Inman. Synergistic smart morphing aileron: Experimental quasi-static performance characterization. Journal of Intelligent Material Systems and Structures, 26(10): 1179-1190, (2015).

DOI: 10.1177/1045389x14538530

Google Scholar

[10] J. Scheller, M. Chinaud, JF. Rouchon, E. Duhayon, S. Cazin, M. Marchal, and M. Braza. Trailing-edge dynamics of a morphing {NACA0012} aileron at high reynolds number by high- speed {PIV}. Journal of Fluids and Structures, 55: 42 - 51, (2015).

DOI: 10.1016/j.jfluidstructs.2014.12.012

Google Scholar

[11] J. Scheller, G. Jodin, K. J. Rizzo, E. Duhayon, J. F. Rouchon, M. Triantafyllou, M. Braza, A Combined Smart-Materials Approach for Next-Generation Airfoils, Solid State Phenomena, Vol. 251, pp.106-112, (2016).

DOI: 10.4028/www.scientific.net/ssp.251.106

Google Scholar

[12] J. Scheller, K. J. Rizzo, G. Jodin, E. Duhayon, J. F. Rouchon, and M. Braza. A hybrid morphing NACA4412 airfoil concept. In Industrial Technology (ICIT), 2015 IEEE International Conference on, pages 1974-1978, March (2015).

DOI: 10.1109/icit.2015.7125385

Google Scholar

[13] G. Jodin, J. Scheller, K. J. Rizzo, E. Duhayon, J. F. Rouchon, and M. Braza. Dimensionnement d'une maquette pour l'investigation du morphing électroactif hybride en soufflerie subsonique. Congrès Français de Mécanique, Online AFM, Association Française de Mécanique, (2015).

DOI: 10.1109/icit.2015.7125385

Google Scholar