Measurement and Control System for Analysis of the Operation of the Stepper Motor

Article Preview

Abstract:

The paper describes a control and measurement system for controlling and analysing operation of a stepper motor. The system design is based on the concept of virtual instrument, where data acquisition and transmission use standard solutions, whereas software serves both as a generator and a measurement system – an oscilloscope. The generator allows efficient control of motor operation in the following control modes: wave, full-step and half-step control. There were no winding powering sequence errors observed. The measurement system allows presenting and analysing voltage waveforms in individual windings with possibility to detect couplings and overvoltages. It was also shown that it is possible to detect locking of rotor rotation.The proposed virtual instruments have open structure, which enables extended analysis based on available measurements or expand range of measurements as long as measurement and control system instrumentation allows that.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

113-126

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.O. Carrica, S.A. Gonzalez, M. Benedetti, A high speed velocity control algorithm of multiple stepper motors. Mechatronics 14(6) (2004) 675–684.

DOI: 10.1016/j.mechatronics.2004.01.006

Google Scholar

[2] N.M. Elsodany, S.F. Rezeka, N.A. Maharem, Adaptive PID control of a stepper motor driving a flexible rotor. Alexandria Engineering Journal 50(2) (2011) 127–136.

DOI: 10.1016/j.aej.2010.08.002

Google Scholar

[3] M. Kukla, at all, Determination of the torque characteristics of a stepper motor. Procedia Engineering 136 (2016) 375 – 379.

DOI: 10.1016/j.proeng.2016.01.226

Google Scholar

[4] B. Heiman, W. Gerth, K. Popp, Mechatronika: komponenty, metody, przykłady, tł. M. Gawrysiak, Wydawnictwo Naukowe PWN, Warszawa (2001).

Google Scholar

[5] Mechatronika, Ed. Sławomir WIAK, Akademicka Oficyna Wydawnicza EXIT, Politechnika Łódzka, (2009).

Google Scholar

[6] M. Sungwook, K. Dong Hwan, Step-out detection and error compensation for a micro-stepper motor using current feedback. Mechatronics 24(3) (2014) 265–273.

DOI: 10.1016/j.mechatronics.2014.02.012

Google Scholar

[7] N.M. Elsodany, S.F. Rezeka, N.A. Maharem, Adaptive PID control of a stepper motor driving a flexible rotor. Alexandria Engineering Journal 50 (2011) 127–136.

DOI: 10.1016/j.aej.2010.08.002

Google Scholar

[8] A. Morar, Stepper motor model for dynamic simulation. ACTA Electrotehnica 44(2) (2003) 117-122.

Google Scholar

[9] Y.B. Gandole, Virtual Instrumentation as an Effective Enhancement to Laboratory Experiment. International Journal of Computer Science and Information Technologies 2(6) (2011) 2728-2733.

Google Scholar

[10] M. Kabacinski, R. Pawliczek, Mechatronic concept for airflow test laboratory equipment. Solid State Phenomena 220-221 (2015) 445-450.

DOI: 10.4028/www.scientific.net/ssp.220-221.445

Google Scholar

[11] D. Koniar, Virtual Instrumentation for Visual Inspection in Mechatronic Applications. Procedia Engineering 96 (2014) 227 – 234.

DOI: 10.1016/j.proeng.2014.12.148

Google Scholar

[12] R.J. Rak, Wirtualny przyrząd pomiarowy – realne narzędzie współczesnej metrologii. Oficyna Wydawnicza Poltechniki Warszawskiej (2003) 168 (in Polish).

Google Scholar

[13] http: /ecx. images-amazon. com/images/I/51RsO74D-xL. _SY300_. jpg (1. 03. 2016).

Google Scholar

[14] P. Soppa, Control and measurement system for stepper motor drive inspection, Opole University of Technology, Opole 2015 (in Polish).

Google Scholar

[15] R.W. Larsen, LabVIEW for Engineers. Prentice Hall (2011) 352.

Google Scholar