Model of Energetic Efficient Redundant Actuation

Article Preview

Abstract:

The model of linear drive with redundant actuation and control system is designed to compare the energy efficiency of the different actuation type. The redundant actuation control system is optimized to increase the energy efficiency of the entire drive. Calculation with this model compares consumed electricity for each drive topology. The results can be used in the design of energy-efficient production machinery and equipment, which is the area of interest of so-called Ecodesign.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

132-139

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Fischer, Preparatory Study to establish the Ecodesign Working Plan implementing Directive Draft Task 1 Report Document information Or, no. October 2014, p.1–48, (2015).

Google Scholar

[2] T. Behrendt, A. Zein, and S. Min, Development of an energy consumption monitoring procedure for machine tools, CIRP Ann. - Manuf. Technol., vol. 61, p.43–46, (2012).

DOI: 10.1016/j.cirp.2012.03.103

Google Scholar

[3] M. Mori, M. Fujishima, Y. Inamasu, and Y. Oda, A study on energy efficiency improvement for machine tools, CIRP Ann. - Manuf. Technol., vol. 60, p.145–148, (2011).

DOI: 10.1016/j.cirp.2011.03.099

Google Scholar

[4] R. Neugebauer, M. Wabner, H. Rentzsch, and S. Ihlenfeldt, Structure principles of energy efficient machine tools, CIRP J. Manuf. Sci. Technol., vol. 4, no. 2, p.136–147, (2011).

DOI: 10.1016/j.cirpj.2011.06.017

Google Scholar

[5] J. Augste, M. Holub, and R. Knoflicek, Tools for Visualization of Active Power and Energy at Machine Tools., Mechatron. Syst. Mater. Opole, Pol. Oficyna Wydaw. Politech. Opol. 2014. s. 1-5. ISBN 978-83-64056-58- 1.

Google Scholar

[6] J. Augste, M. Holub, R. Knoflicek, T. Novotný, and J. Vyroubal, Monitoring of Energy Flows in the Production Machines., Mechatronics 2013 Recent Technol. Sci. Adv. 1. Springer Int. Publ. Switz. Spinger, 2013. s. 1.

DOI: 10.1007/978-3-319-02294-9_1

Google Scholar

[7] P. Blecha, R. Huzlík, P. Houška, and M. Holub, Device for electric power measurement at machine tools., MM Scinece Journal, 2012, roč. 2012, č. Spec. issue, s. 1-6. ISSN 1805- 0476.

Google Scholar

[8] J. Augste, R. Knoflicek, M. Holub, and T. Novotný, T. TOOLS FOR VISUALIZATION OF ENERGY FLOWS IN THE CONSTRUCTION OF MACHINE- TOOLS., MM Sci. Journal, 2013, roč. 2013, č. March, s. 392-395. ISSN 1803- 1269.

DOI: 10.17973/mmsj.2013_03_201303

Google Scholar

[9] I. Garciaherreros, X. Kestelyn, J. Gomand, and P. -J. Barre, Decoupling basis control of dual-drive gantry stages for path-tracking applications, 2010 IEEE Int. Symp. Ind. Electron., p.131–136, Jul. (2010).

DOI: 10.1109/isie.2010.5637612

Google Scholar

[10] I. García-Herreros, X. Kestelyn, J. Gomand, R. Coleman, and P. J. Barre, Model-based decoupling control method for dual-drive gantry stages: A case study with experimental validations, Control Eng. Pract., vol. 21, p.298–307, (2013).

DOI: 10.1016/j.conengprac.2012.10.010

Google Scholar

[11] Y. Halevi, E. Carpanzano, G. Montalbano, and Y. Koren, Minimum energy control of redundant actuation machine tools, CIRP Ann. - Manuf. Technol., vol. 60, p.433–436, (2011).

DOI: 10.1016/j.cirp.2011.03.032

Google Scholar

[12] J. M. Pavel Souček, Obráběcí stroje a technologie na EMO Milano 2009.

Google Scholar

[13] D. J. Gordon and K. Erkorkmaz, Precision control of a T-type gantry using sensor/actuator averaging and active vibration damping, Precis. Eng., vol. 36, no. 2, p.299–314, (2012).

DOI: 10.1016/j.precisioneng.2011.11.003

Google Scholar

[14] T. S. Giam, K. K. Tan, and S. Huang, Precision coordinated control of multi-axis gantry stages, ISA Trans., vol. 46, p.399–409, (2007).

DOI: 10.1016/j.isatra.2007.02.002

Google Scholar

[15] M. -F. Hsieh, H. -Y. Li, and K. -Y. Lai, Synchronous control of a network-based triple mechanically-coupled ball screws system, SICE Annu. Conf. 2011, no. dll, p.1081–1086, (2011).

Google Scholar

[16] M. F. Hsieh, W. S. Yao, and C. R. Chiang, Modeling and synchronous control of a single-axis stage driven by dual mechanically-coupled parallel ball screws, Int. J. Adv. Manuf. Technol., vol. 34, p.933–943, (2007).

DOI: 10.1007/s00170-007-1135-4

Google Scholar

[17] Z. Q. Luo and D. L. Liang, Mathematical Model and Characteristics Analysis of the Novel Dual-Redundancy Permanent Magnet Brushless Machine System, Appl. Mech. Mater., vol. 416–417, p.418–427, (2013).

DOI: 10.4028/www.scientific.net/amm.416-417.418

Google Scholar

[18] L. Zhao, X. Zhang, and J. Ji, a Torque Control Strategy of Brushless Direct Current Motor With Current, Int. Converence Mechatronics Autom., p.303–307, (2015).

DOI: 10.1109/icma.2015.7237501

Google Scholar

[19] J. Toman, V. Singule, and Z. Hadaš, Model of aircraft actuator with BLAC motor, 16th Int. Power Electron. Motion Control Conf. Expo. PEMC 2014, p.197–202, (2014).

DOI: 10.1109/epepemc.2014.6980712

Google Scholar

[20] J. F. Gieras, Z. J. Piech, and B. Z. Tomczuk, Topologies and Section, Linear Synchronous Mot. Transp. Autom. Syst., p.1–33, (2011).

Google Scholar

[21] Maxon, Maxon Motor RE 36 Datasheet., [Online]. Available: http: /www. treffer. com. br/produtos/maxon/motores/pdf/84. pdf.

Google Scholar

[22] Maxon, Maxon Motor RE 40 Datasheet., [Online]. Available: http: /www. treffer. com. br/produtos/maxon/motores/pdf/83. pdf.

Google Scholar

[23] J. H. Seo, T. K. Chung, C. G. Lee, S. Y. Jung, and H. K. Jung, Harmonic iron loss analysis of electrical machines for high-speed operation considering driving condition, IEEE Trans. Magn., vol. 45, no. 10, p.4656–4659, (2009).

DOI: 10.1109/tmag.2009.2022316

Google Scholar

[24] P. a. Hargreaves, B. C. Mecrow, and R. Hall, Calculation of iron loss in electrical generators using finite element analysis, 2011 IEEE Int. Electr. Mach. Drives Conf., vol. 48, no. 5, p.1368–1373, (2011).

DOI: 10.1109/iemdc.2011.5994805

Google Scholar

[25] D. M. Ionel, M. Popescu, M. I. McGilp, T. J. E. Miller, S. J. Dellinger, and R. J. Heideman, Computation of core losses in electrical machines using improved models for laminated steel, IEEE Trans. Ind. Appl., vol. 43, no. 6, p.1554–1564, (2007).

DOI: 10.1109/tia.2007.908159

Google Scholar

[26] R. Huzlík, M. Holub, F. Bradáč, and P. Blecha, Simulation of Linear Axis with Ball Screw and Permanent Magnet Synchronous Machine, in MM Science Journal, 2012, roč. 2012, č. Special Issue, s. 1-4. ISSN: 1803- 1269.

Google Scholar