Review of Chosen Control Algorithms Used for Small UAV Control

Article Preview

Abstract:

In this article review of chosen control algorithms used for small UAV at Department of Control Systems of Rzeszów University of Technology and their properties is presented. At first, control laws based on modified PID algorithms are described. The example of modification is the use of double differentiation in the algorithm. Proposed modifications improve control quality. Next, model following LQR algorithms is introduced. Implementation of that algorithm improves control quality in the flight at trajectory. In the algorithm presented integration between desired trajectory and plant trajectory is introduced as an additional state.Another algorithm which is presented is sliding mode control algorithm as an example of robust control. It allows you to control plane in event of a fault. Appropriate selection of sliding surface ensures the stability of the system and good quality control under normal operating conditions and enables flight in the event of non-critical damage. To improve the quality control in emergency mode, the parameters of the sliding surface during flight can be modified. The last presented algorithm is model reference adaptive controller. The adaptation mechanism is derived from second Lyapunov method. It also enables control in the case of chosen faults. An example presented in the article is realized for roll angle control. In the case of control surface fault (e.g. aileron or rudder), the algorithm enables aircraft control. In that case control surface fault is treated as an uncertainty of model used.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

175-183

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Samolej, A. Tomczyk, J. Pieniążek, G. Kopecki, T. Rogalski, L. Rolka, Prototyp systemu sterowania kątem pochylenia samolotu na platformę VxWorks 653, Metody wytwarzania i zastosowania systemów czasu rzeczywistego, praca zbiorowa pod red. L. Trybusa i S. Samoleja, WKŁ (2010).

DOI: 10.7862/rm.2013.46

Google Scholar

[2] D. Nowak, G. Kopecki, M. Orkisz, T. Rogalski, P. Rzucidło, The selected innovative solutions in UAV control systems technologies. Innovative control systems for tracked vehicle platforms, Studies in Computational Intelligence. Springer Verlag (2013).

DOI: 10.1007/978-3-319-04624-2_3

Google Scholar

[3] B. Dolega, G. Kopecki, A. Tomczyk, Possibilities of using software redundancy in low cost aeronautical control systems, 2016 IEEE Metrology for Aerospace (MetroAeroSpace), Florence, (2016) 33-37. doi: 10. 1109/MetroAeroSpace. 2016. 7573181.

DOI: 10.1109/metroaerospace.2016.7573181

Google Scholar

[4] B. Dolega, T. Rogalski, The New Conception of The Laboratory Testing of the FBW Control Systems for Small Aircraft, Aircraft Enginering and Aerospace Technology: An International Journal, Vol. 74, No 3 (2004) 293-298.

DOI: 10.1108/00022660410536023

Google Scholar

[5] T. Rogalski, M. Krawczyk, Projekt i badania eksperymentalnego systemu sterowania samolotem, VI Konferencja Awioniki, Bezmiechowa, (2010).

Google Scholar

[6] G. Kopecki, Aircraft Trajectory Model Following Control With The Use of Linear Quadratic Regulator Control Laws, AIAA Guidance, Navigation, and Control Conference, Guidance, Navigation, and Control and Co-located Conferences, (2012).

DOI: 10.2514/6.2012-4828

Google Scholar

[7] K. J. Astrom, R. M. Murray, Feedback Systems. An Introduction for Scientists and Engineers, Princeton University Pres, (2008).

Google Scholar

[8] B. L. Stevens, F. L. Lewis, Aircraft Control And Simulation, John Willey& Sons, Inc., New York (1992).

Google Scholar

[9] J. Liu, X. Wang, Advanced Sliding Mode Control for Mechanical Systems. Design, Analysis and Matlab Simulation, Springer-Verlag Berlin Heidelberg (2011).

Google Scholar

[10] A. Mystkowski, Implementation and investigation of a robust control algorithm for an unmanned micro-aerial vehicle, Robotics and Autonomous Systems, 62, 1187–1196 (2014).

DOI: 10.1016/j.robot.2014.04.002

Google Scholar

[11] G. Kopecki, Control computers diagnostics for UAV flight control system, Aircraft Engineering and Aerospace Technology, Vol. 88 Iss: 3 (2016).

DOI: 10.1108/aeat-10-2012-0187

Google Scholar

[12] A. Tomczyk, In-flight tests of navigation and control system of unmanned aerial vehicle, Aircraft Engineering and Aerospace Technology, Vol. 75 Iss: 6 (2003),. 581 – 587.

DOI: 10.1108/00022660310503057

Google Scholar

[13] P. Chudý, P. Rzucidło, A. Tomczyk, Safety enhanced digital flight control system, Aircraft Engineering and Aerospace Technology, Volume 81(2009) Issue 5, Emerald Group Publishing Limited, pp.416-423.

DOI: 10.1108/00022660910983699

Google Scholar

[14] G. Kopecki, A. Tomczyk, P. Rzucidło, Algorithms of Measurement System for a Micro UAV, Mechatronic Systems and Materials IV, Solid State Phenomena, Vol. 198, Trans Tech Publications Inc., Zurich 2013, pp.165-170.

DOI: 10.4028/www.scientific.net/ssp.198.165

Google Scholar

[15] P. Rzucidło, Unmanned Air Vehicle Research Simulator - Prototyping and Testing of Control and Navigation Systems, Mechatronic Systems and Materials IV, Solid State Phenomena, Vol. 198, Trans Tech Publications Inc., Zurich 2013, pp.266-274.

DOI: 10.4028/www.scientific.net/ssp.198.266

Google Scholar

[16] 11. Z. Hendzel, A. Burghardt, P. Gierlak, M. Szuster, Conventional and Fuzzy Force Control in Robotised Machining, Solid State Phenomena, Vol. 210 (2013), pp.178-185.

DOI: 10.4028/www.scientific.net/ssp.210.178

Google Scholar

[17] G. Kopecki, T. Rogalski, Aircraft attitude calculation with the use of aerodynamic flight data as correction signals, Aerospace Science and Technology (2013), http: /dx. doi. org/10. 1016/j. ast. 2013. 10. 009.

DOI: 10.1016/j.ast.2013.10.009

Google Scholar

[18] R. Szpunar, P. Rzucidło, Application of ASG-EUPOS network for on-board control system of a small unmanned aircraft Przeglad Elektrotechniczny R. 88 (2012) NR 12a/2012, SIGMA-NOT, Warsaw, pp.154-158.

Google Scholar

[19] Z. Gosiewski, J. Cieśluk, L. Ambroziak (2011), Vision-based obstacle avoidance for Unmanned Aerial Vehicles, CISP'11, 2020-(2025).

DOI: 10.1109/cisp.2011.6100621

Google Scholar

[20] B. Brzozowski, W. Sobieraj, K. Wojtowicz (2013), UAV Avionics System Software Development Using Simulation Method, Mechatronic Systems and Materials IV, Solid State Phenomena Volume: 198 Pages: 260-265.

DOI: 10.4028/www.scientific.net/ssp.198.260

Google Scholar