On Stabilization of Non-Uniformly Sampled Control Systems - A Survey

Article Preview

Abstract:

The paper presents a collection of chosen results solving the problem on stability and stabilizability of linear and linearized non-uniformly sampled systems. The results are divided onto three groups: results on systems with input delay, systems with discrete-time non-uniformly sampled control input and hybrid systems.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 260)

Pages:

156-174

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Heemels W.P.M.H., van de Wouw N., Gielen R.H., et al., Comparison of overapproximation methods for stability analysis of networked control systems, Proc. of the 13th International Conference on Hybrid Systems, 12-16 April 2010, Stockholm, pp.181-190.

DOI: 10.1145/1755952.1755979

Google Scholar

[2] Francis B.A., Georgiou T.T., Stability theory for linear time-invariant plants with periodic digital controllers, IEEE Transactions on Automatic Control, vol. 33(9) (1988) pp.820-832.

DOI: 10.1109/9.1310

Google Scholar

[3] Kalman R.E., Bertram J.E., A unified approach to the theory of sampling systems, Journal of the Franklin Institute, vol. 267(5) (1959) pp.405-436.

DOI: 10.1016/0016-0032(59)90093-6

Google Scholar

[4] Margolis E., Eldar Y. C. Reconstruction of nonuniformly sampled periodic signals: algorithms and stability analysis, Proc. of the 11th International Conference on Electronics, Circuits and Systems, 13-15 December 2004, Tel-Aviv, pp.555-558.

DOI: 10.1109/icecs.2004.1399741

Google Scholar

[5] Ding F., Qiu L., Chen T., Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems, Automatica, vol. 45(2) (2009) pp.323-332.

DOI: 10.1016/j.automatica.2008.08.007

Google Scholar

[6] Boche H., Monich U.J., Non-uniform sampling – signal and system representation, Proc. of the International Symposium on Information Theory and Its Applications, 7-10 December 2008, Auckland, pp.1576-1581.

DOI: 10.1109/isita.2008.4895656

Google Scholar

[7] Maymon S., Oppenheim A.V., Randomized sinc interpolation of nonuniform samples, Proc. of the 17th European Signal Processing Conference, 24-28 August 2009, Glasgow, pp.4745-4758.

DOI: 10.1109/tsp.2011.2160054

Google Scholar

[8] Peter T., Potts D., Tasche M., Nonlinear approximation by sums of exponentials and translates, SIAM Journal on Scientific Computing, vol. 33(4) (2011) p.1920-(1947).

DOI: 10.1137/100790094

Google Scholar

[9] Feichtinger H.G., Grochenig K. Theory and practice of irregular sampling, Wavelets: Mathematics and Applications, CRC Press, Boca Raton, (1994).

Google Scholar

[10] Krieger G., Gebert N., Moreira A., Unambiguous SAR signal reconstruction from nonuniform displaced phase center sampling, IEEE Geoscience and Remote Sensing Letters, vol. 1(4) (2004) pp.260-264.

DOI: 10.1109/lgrs.2004.832700

Google Scholar

[11] Gunnarsson F., Gustafsson F., Gunnarsson F., Frequency analysis using non-uniform sampling with application to active queue management, Proc. of the IEEE International Conference on Acoustics, Speech and Signal Processing, 17-21 May 2004, Montreal, pp.578-581.

DOI: 10.1109/icassp.2004.1326324

Google Scholar

[12] Murthy G.R., Ahuja N., Non-Uniform Sampling: A novel approach, acoustics, speech and signal processing, Proc. of the IEEE International Conference on Taipei, 19-24 April 2009, Taipei, pp.3229-3232.

DOI: 10.1109/icassp.2009.4960312

Google Scholar

[13] Xie L., Liu Y.J., Yang H.Z., Ding F., Modeling and identification for non-uniformly periodically sampled-data systems, IET Control Theory and Applications, vol. 4(5) (2010), pp.784-794.

DOI: 10.1049/iet-cta.2009.0064

Google Scholar

[14] Eng F., Non-uniform sampling in statistical signal processing, PhD Thesis, Linköpings university, Sweden (2007), pp.7-29.

Google Scholar

[15] Bowyer P., Agilent Technologies Inc., Non-uniform sampling (NUS) for everyday use: sharper spectra in less time, Application Note, USA, (2013).

Google Scholar

[16] Ding F., Chen T., Least squares based self-tuning control of dual-rate systems, International Journal of Adaptive Control and Signal Processing, vol. 18(8) (2004) pp.697-714.

DOI: 10.1002/acs.828

Google Scholar

[17] Shenoy R. G., Nonuniform sampling of signals & applications, Schlumberger-Doll Research, London, (1994).

Google Scholar

[18] Yen J. L., On nonuniform sampling of bandwidth-limited signals, IRE Transactions on Circuit Theory, vol. 3(4) (2003) pp.251-257.

DOI: 10.1109/tct.1956.1086325

Google Scholar

[19] Rawn M. D., On nonuniform sampling expansions using entire interpolating functions, and on the stability Bessel-type sampling expansions, IEEE Transactions on Information Theory, vol. 35(3) (1989) pp.549-557.

DOI: 10.1109/18.30976

Google Scholar

[20] Sosa-Pedroza J., Barrera-Figuerosa V., Lopez-Bonilla J., Equdistant and non-equidistant sampling for method of moments applied to pocklington equation, Proc. of the 18th International Symposium on Personal, Indoor and Mobile Radio Communication, 3-7 September 2007, Athens, pp.1-5.

DOI: 10.1109/pimrc.2007.4394005

Google Scholar

[21] Ben-Romdhbane M., Rebai C., Ghazel A., Desgeys P., Loumeau P., Non-uniform sampling schemes for IF sampling radio receiver, design and test of integrated systems in nanoscale technology, Proc. of the International Conference on Tunisia, 5-7 September 2006, Tunis, pp.15-20.

DOI: 10.1109/dtis.2006.1708729

Google Scholar

[22] Boche H., Monich U.J., Local and global convergence behavior of non-equidistant sampling schemes, Journal of Signal Processing, vol. 90(1) (2010) pp.146-156.

DOI: 10.1109/icassp.2009.4960241

Google Scholar

[23] Zeevi Y.Y., Schlomot E., Nonuniform sampling and antialiasing in image representation, IEEE Transactions on Signal Processing, vol. 41(3) (1993) pp.1223-1235.

DOI: 10.1109/78.205725

Google Scholar

[24] Khan S., Goodall R.M., Dixon R., Design and analysis of non-uniform rate digital controllers, Proc. of the International Conference on Control, 7-10 September 2010, Coventry, pp.1-6.

DOI: 10.1049/ic.2010.0338

Google Scholar

[25] Tang B., Zeng Q., He D., Zhang Y., Random stabilization of sampled-data control systems with nonuniform sampling, International Journal of Automotion and Computing, vol. 9(5) (2012) pp.492-500.

DOI: 10.1007/s11633-012-0672-y

Google Scholar

[26] Seuret A., Stability analysis for sampled-data systems with a time-varying period, Proc. of the 48th IEEE Conference on Decision and Control, 16-18 December 2009, Shanghai, pp.8130-8135.

DOI: 10.1109/cdc.2009.5400681

Google Scholar

[27] Zeng Q., Zhang Y., Tang B., Fault estimation for sampled-data systems with non-uniform sampling, Advances in Information Sciences and Service Sciences, vol. 5(3) (2013) pp.546-553.

DOI: 10.4156/aiss.vol5.issue3.64

Google Scholar

[28] Seuret A., A novel stability analysis of linear systems under asynchronous samplings, Automatica, vol. 48(1) (2011) pp.177-182.

DOI: 10.1016/j.automatica.2011.09.033

Google Scholar

[29] Suh Y.S., Stability and stabilization of nonuniform sampling systems, Automatica, vol. 44(12) (2008) pp.3222-3226.

DOI: 10.1016/j.automatica.2008.10.002

Google Scholar

[30] Naghshtabrizi P., Hespanha J. P., Teel A. R., Exponential stability of impulsive systems with application to uncertain sampled-data systems, System and Control Letters, vol. 57(5) (2008) pp.378-385.

DOI: 10.1016/j.sysconle.2007.10.009

Google Scholar

[31] Peet M., Seuret A., Global stability analysis of nonlinear sampled-data systems using convex methods, Advances in Delays and Dynamics, vol. 1 (2014) pp.215-227.

DOI: 10.1007/978-3-319-01695-5_16

Google Scholar

[32] Gao H., Chen T., Stabilization of nonlinear systems under variable sampling: a fuzzy control approach, IEEE Transactions on Fuzzy Systems, vol. 15(5) (2007) pp.972-982.

DOI: 10.1109/tfuzz.2006.890660

Google Scholar

[33] Bechir D. M., Ridha B., Non-uniform Sampling Schemes for RF Bandpass Sampling Receiver, Proc. of the International Conference on Signal Processing Systems, 15-17 May 2009, Singapore, pp.13-17.

DOI: 10.1109/icsps.2009.206

Google Scholar

[34] Chenchi L., Non-uniform sampling: algorithms and architectures, PhD Thesis, Georgia Institute of Technology, (2012).

Google Scholar

[35] Lin Y., Vaidyanathan P. P., Periodically nonuniform sampling of bandpass signals, IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 45(3) (1998) pp.340-351.

DOI: 10.1109/82.664240

Google Scholar

[36] Guo G., Systems with nonequidistant sampling: controllable? observable? stable?, Asian Journal of Control, vol. 7(4) (2005) pp.455-461.

DOI: 10.1111/j.1934-6093.2005.tb00409.x

Google Scholar

[37] Ding F., Chen T., Iwai Z., Adaptive digital control of hammerstein nonlinear systems with limited output sampling, SIAM Journal on Control and Optimization, vol. 45(6) (2007) pp.2257-2276.

DOI: 10.1137/05062620x

Google Scholar

[38] Feizi S., Angelopoulos G., Goyal V., Mdard M., Energy-efficient time-stampless adaptive nonuniform sampling, Proc. of the IEEE Sensors, 28-31 October 2011, Limerick, pp.912-915.

DOI: 10.1109/icsens.2011.6127202

Google Scholar

[39] Chen Y., Eldar Y.C., Goldsmith A.J., Channel capacity under general nonuniform sampling, Proc. of the IEEE International Symposium on Information Theory Proceedings, 1-6 July 2012, Cambridge, pp.855-859.

DOI: 10.1109/isit.2012.6284682

Google Scholar

[40] Kreisselmeier G., On sampling without loss of observability/controllability, IEEE Transactions on Automatic Control, vol. 44(5) (1999) pp.1021-1025.

DOI: 10.1109/9.763221

Google Scholar

[41] Li W., Shah S., Data-driven Kalman filters for non-uniformly sampled multirate system with application to fault diagnosis, Proc. of American Control Conference, 8-10 June 2005, Portland, pp.2768-2774.

DOI: 10.1109/acc.2005.1470388

Google Scholar

[42] Sheng J., Chen T., Shah S.L., GPC for non-uniformly sampled systems based on the lifted models, 15th IFAC World Congress, vol. 35(1) (2002) pp.405-410.

DOI: 10.3182/20020721-6-es-1901.00636

Google Scholar

[43] Zhang C., Middleton R.H., Evans R.J., An algorithm for multirate sampling control, Proc. of the IEEE Transactions on Automatic Control, vol. 34 (1989) pp.792-795.

DOI: 10.1109/9.29418

Google Scholar

[44] Albertos P., Crespo A., Real-time control of non-uniformly sampled systems, Control Engineering Practice, vol. 7(4) (1999) pp.445-458.

DOI: 10.1016/s0967-0661(99)00005-2

Google Scholar

[45] S. Feizi, V. Goyal, M. Medard (2010), Locally adaptive sampling, Proc. of the 48th Annual Allerton Conference on Communication Control and Computing, 29 September – 1 October 2010, Allerton, pp.152-159.

DOI: 10.1109/allerton.2010.5706901

Google Scholar

[46] Czaczkowska J., Kondratiuk M., Pawluszewicz E., Control system with adaptive nonuniform sampling switch algorithms. Proc. of the 17th International Carpathian Control Conference, 29 May – 1 June 2016, Tatranska Lomnica, pp.128-133.

DOI: 10.1109/carpathiancc.2016.7501080

Google Scholar

[47] Mostowski A., Stark M., Elements of higher algebra. PWN, Warszawa, 1975 (in polish).

Google Scholar

[48] Kaczorek T., Dzieliński A., Dąbrowski W., Łopatka R., Basics of control theory, Wydawnictwo WNT, Warszawa, 2013 (in polish).

Google Scholar

[49] Zabczyk J., Mathematical control theory, Springer Science & Business Media, Birkhäuser Basel, (2008).

Google Scholar

[50] Sontag E., Mathematical control theory: deterministic finite dimensional systems, Springer, New York, (1998).

Google Scholar

[51] Akyar H., A note on families of stable matrices, International Journal of Mathematic Analysis, vol. 4(9) (2010) pp.547-554.

Google Scholar

[52] Seuret A., Exponential stability and stabilization of sampled-data systems with time-varying period, Proc. of the 9th IFAC Workshop on Time Delay Systems, 7-9 June 2010, Prague, pp.301-306.

DOI: 10.3182/20100607-3-cz-4010.00054

Google Scholar

[53] Fridman E., Seuret A., Richard J., Robust sampled-data stabilization of linear systems: an input delay approach, Automatica, vol. 40(8) (2004) pp.1441-1446.

DOI: 10.1016/j.automatica.2004.03.003

Google Scholar

[54] Peng Ch., Tian Y., Tade M., State feedback controller design of networked control systems with interval time-varying delay nonlinearity, International Journal of Robust and Nonlinear Control, vol. 18 (12) (2008) pp.1285-1301.

DOI: 10.1002/rnc.1278

Google Scholar

[55] Moarref M., Rodrigues L., A convex approach to stabilitzation of sampled-data piecewise affine slab systems, Proc. of the 52nd IEEE Conference on Decision and Control, 10-13 December 2013, Firenze, pp.4748-4752.

DOI: 10.1109/cdc.2013.6760633

Google Scholar

[56] Fujioka H., Nakai T., Stabilizing systems with aperiodic sample-and-hold devices: state feedback case, IET Control Theory & Applications, vol. 4(2) (2010) pp.265-272.

DOI: 10.1049/iet-cta.2009.0012

Google Scholar

[57] Marti P., Villa R., Fohler G., Fuertes J. M., A discrete-time controller design method to tolerate non-equidistant sampling and actuation, Technical report, Automatic Control Department. Technical University of Catalonia, Italy, (2002).

Google Scholar

[58] Xie L., Yang H., Ding F., Inferential adaptive control for non-uniformly sampled-data systems, Proc. of the American Control Conference, 29 June – 1 July 2011, San Francisco pp.4177-4182.

DOI: 10.1109/acc.2011.5991280

Google Scholar

[59] Fernandez J.R., Hermida R.C., Ayala D.E., Construction of tolerance intervals for endocrine variables with nonequidistant sampling,  Proc. of the 15th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 31 October 1993, San Diego, pp.387-388.

DOI: 10.1109/iembs.1993.978599

Google Scholar

[60] Tang X., Ding B., Design of networked control systems with bounded arbitrary time delays, International Journal of Automotion and Computing, vol. 9(2) (2012) pp.182-190.

DOI: 10.1007/s11633-012-0632-6

Google Scholar

[61] Hespanha, J. P.; Naghshtabrizi, P.; Xu, Y., A survey of recent results in networked control systems, Proc. of the IEEE, vol. 95(1) (2007) p.138–162.

DOI: 10.1109/jproc.2006.887288

Google Scholar

[62] Deaecto G.S., Souza M., Geromel J.C., Discrete-time switched linear systems state feedback design with application to networked control, Automatic Control, IEEE Transactions, vol. 60(3) (2014) pp.877-881.

DOI: 10.1109/tac.2014.2341131

Google Scholar

[63] Micheli M., Jordan M. I., Random Sampling of a Continuous-time Stochastic Dynamical System, Proc. of the 15th International Symposium on the Mathematical Theory of Networks and Systems, 12-16 August 2012, South Bend, pp.1-15.

Google Scholar

[64] PapenfuB F., Artyukh Y., Boole E., Timmermann D., Nonuniform sampling driver design for optimal ADC utilization, Proc. of the International Symposium on Circuits and Systems, vol. 4 (2003) pp.516-519.

DOI: 10.1109/iscas.2003.1205948

Google Scholar

[65] Liu H., ADS82x ADC with non-uniform sampling clock, Analog Applications Journal, vol. 40(12) (2003) pp.5-11.

Google Scholar

[66] Maalej A., Ben-Romdhame M., Rebai C., et al., Non uniform sampling for power consumption reduction in SDR receiver baseband stage, Proc. of the General Assembly and Scientific Symposium of the International Union of Radio Science, 13-20 August 2011, Istanbul, pp.987-991.

DOI: 10.1109/ursigass.2011.6050507

Google Scholar

[67] Vernhes J., Chabert M., Lacaze B., et al., Adaptive estimation and compensation of the time delay in a periodic non-uniform sampling scheme, Proc. of the International Conference on Sampling Theory and Applications, 25-29 May 2015, Washington, pp.473-477.

DOI: 10.1109/sampta.2015.7148936

Google Scholar

[68] Hu F., Kumar S., Multimedia over cognitive radio networks: algorithms, protocols, and experiments, CRC Press, Boca Raton, (2014).

DOI: 10.1201/b17749

Google Scholar

[69] Xiong Y., Huang Y., Sun P., Evans M., Cronk T., A non-uniform sampling tangent type FM demodulation, IEEE Transactions on Consumer Electronics, vol. 50(3) (2004) pp.844-847.

DOI: 10.1109/tce.2004.1341689

Google Scholar