A New Strategy in Face Milling - Inverse Cutting Technology

Article Preview

Abstract:

The article describes a new technology in milling of the flat surfaces - Inverse Cutting Technology. The theoretical basics of the inverse cutting are formulated. The boundary conditions of the process depending on the cutting parameters are presented. The chip formation and chip flow by inverse milling are simulated. The comparison of cutting forces by conventional and inverse face milling is shown. Finally, cutting experiments were conducted to confirm the results of the 3D-FEM-simulation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

331-338

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y. Altintas and M. Weck, Chatter Stability of Metal Cutting and Grinding, CIRP Annals - Manufacturing Technology, vol. 53, no. 2, p.619–642, (2004).

DOI: 10.1016/s0007-8506(07)60032-8

Google Scholar

[2] G. Quintana and J. Ciurana, Chatter in machining processes: A review, International Journal of Machine Tools and Manufacture, vol. 51, no. 5, p.363–376, (2011).

DOI: 10.1016/j.ijmachtools.2011.01.001

Google Scholar

[3] D. -T. Nguyen, Potenzial eines Rundschaft-Fräswerkzeugsystems für Forschung und Produktion, Aachen, Shaker, (2009).

Google Scholar

[4] S. Batt, Ein Beitrag zur Entwicklung von Fräswerkzeugen mit verbesserten dynamischen Schnitteigenschaften, (2009).

Google Scholar

[5] E. Paucksch, S. Holsten, M. Linß et al., Zerspantechnik: Prozesse, Werkzeuge, Technologien, Vieweg+Teubner Verlag / GWV Fachverlage GmbH, Wiesbaden, Wiesbaden, (2008).

Google Scholar

[6] H. K. Tönshoff and B. Denkena, Basics of cutting and abrasive processes, Springer, Berlin, New York, (2013).

Google Scholar

[7] J. Beno, ed., Computation of main cutting force when milling with stepped depth of cut, (2005).

Google Scholar

[8] B. Karpuschewski and S. Batt, Improvement of Dynamic Properties in Milling by Integrated Stepped Cutting, CIRP Annals - Manufacturing Technology, vol. 56, no. 1, p.85–88, (2007).

DOI: 10.1016/j.cirp.2007.05.001

Google Scholar

[9] W. Degner, Spanende Formung: Theorie, Berechnung, Richtwerte, Hanser, München [u. a. ], (2002).

DOI: 10.3139/9783446445833.fm

Google Scholar

[10] F. Klocke and A. Kuchle, Cutting, Springer, Berlin, (2011).

Google Scholar

[11] J. P. Davim, Machining of hard materials, Springer, London, (2011).

Google Scholar

[12] Abele, E., et al., Das Hochvorschubfräsen wird neu definiert, ZWF Zeitschrift für wirtschaftlichen Betrieb, Vol 105, Iss. 7/8, p.737–743, (2010).

Google Scholar

[13] W. Grzesik, Modelling and Simulation of Machining Processes and Operations, in Advanced machining processes of metallic materials: Theory, modelling and applications, W. Grzesik, Ed., p.65–91, Elsevier, Amsterdam, (2017).

DOI: 10.1016/b978-0-444-63711-6.00005-3

Google Scholar

[14] F. Zanger, N. Boev, and V. Schulze, Novel Approach for 3D Simulation of a Cutting Process with Adaptive Remeshing Technique, Procedia CIRP, vol. 31, p.88–93, (2015).

DOI: 10.1016/j.procir.2015.03.022

Google Scholar

[15] G. M. Pittalà and M. Monno, 3D finite element modeling of face milling of continuous chip material, The International Journal of Advanced Manufacturing Technology, vol. 47, 5-8, p.543–555, (2010).

DOI: 10.1007/s00170-009-2235-0

Google Scholar

[16] CIRP., ed., Dictionary of Production Engineering, Springer, Berlin, (2004).

Google Scholar

[17] R. W. Maruda, G. M. Krolczyk, P. Nieslony et al., The influence of the cooling conditions on the cutting tool wear and the chip formation mechanism, Journal of Manufacturing Processes, vol. 24, p.107–115, (2016).

DOI: 10.1016/j.jmapro.2016.08.006

Google Scholar

[18] G. T. Smith, Cutting tool technology: Industrial handbook, Springer, London, (2008).

Google Scholar

[19] J. Beňo, I. Maňková, M. Vrábel et al., Operation Safety and Performance of Milling Cutters with Shank Style Holders of Tool Inserts, Procedia Engineering, vol. 48, p.15–23, (2012).

DOI: 10.1016/j.proeng.2012.09.479

Google Scholar