[1]
K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, (1993).
Google Scholar
[2]
B.J. West, M. Bologna, P. Grigolini, Physics of fractal operators, Springer Verlag, New York, (2003).
Google Scholar
[3]
J-X. Wu, C-M. Li, Y-R. Ho, M-J. Wu, P-T. Huang, C-H. Lin, Peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making, IEEE Sensors J. 16 (2016) 2691-2700.
DOI: 10.1109/jsen.2015.2513899
Google Scholar
[4]
C.C. Tseng, S.L. Lee, Design of fractional order digital differentiator using radial basis function, IEEE Trans. Circuits Syst. -I: Regul. Pap. 57 (2010) 1708-1718.
DOI: 10.1109/tcsi.2009.2034808
Google Scholar
[5]
Y.Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review, Nonlinear Dyn. 38 (2004) 155-170.
DOI: 10.1007/s11071-004-3752-x
Google Scholar
[6]
Y. Ferdi, Computation of fractional order derivative and integral via power series expansion and signal modeling, Nonlinear Dyn. 46 (2006) 1-15.
DOI: 10.1007/s11071-005-9000-1
Google Scholar
[7]
M. Gupta, P. Varshney, G.S. Visweswaran, Digital fractional-order differentiator and integrator models based on first-order and higher order operators, Int. J. Circuit Theor. Appl. 39 (2011) 461-474.
DOI: 10.1002/cta.650
Google Scholar
[8]
B.M. Vinagre, Y.Q. Chen, I. Petras, Two direct Tustin discretization methods for fractional-order differentiator/integrator, J. Frankl. Inst. 340 (2003) 349-362.
DOI: 10.1016/j.jfranklin.2003.08.001
Google Scholar
[9]
C.C. Tseng, Design of FIR and IIR fractional order Simpson digital integrators, Signal Process. 87 (2007) 1045-1057.
DOI: 10.1016/j.sigpro.2006.09.006
Google Scholar
[10]
Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators, IEEE Trans. Circuits Syst. -I: Fundam. Theor. Appl., 49 (2002) 363-367.
DOI: 10.1109/81.989172
Google Scholar
[11]
Y.Q. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator, Signal Process. 83 (2003) 2359-2365.
DOI: 10.1016/s0165-1684(03)00188-9
Google Scholar
[12]
R.S. Barbosa, J.A.T. Machado, M.F. Silva, Time domain design of fractional differintegrators using least-squares, Signal Process. 86 (2006) 2567-2581.
DOI: 10.1016/j.sigpro.2006.02.005
Google Scholar
[13]
M. Romero, A.P. de Madrid, C. Manoso, B.M. Vinagre, IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory, ISA Trans. 52 (2013) 461-468.
DOI: 10.1016/j.isatra.2013.02.002
Google Scholar
[14]
M. Gupta, R. Yadav, Optimization of integer order integrators for deriving improved models of their fractional counterparts, J. Optim. article id. 142390 (2013).
DOI: 10.1155/2013/142390
Google Scholar
[15]
R. Yadav, M. Gupta, New improved fractional order integrators using PSO optimization, Int. J. Electron. 102 (2015) 490-499.
DOI: 10.1080/00207217.2014.901424
Google Scholar
[16]
B.T. Krishna, Studies of fractional order differentiators and integrators: a survey, Signal Process. 91 (2011) 386-426.
DOI: 10.1016/j.sigpro.2010.06.022
Google Scholar
[17]
M. Gupta, R. Yadav, Design of improved fractional order integrators using indirect discretization method, Int. J. Comput. Appl. 59 (2012) 19-24.
DOI: 10.5120/9618-4260
Google Scholar
[18]
F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator Sα using second-order s-to-z transform and signal modeling, Circuits Syst. Signal Process. 34 (2015) 1869-1891.
DOI: 10.1007/s00034-014-9928-9
Google Scholar
[19]
Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simul. 76 (2001) 60-68.
DOI: 10.1177/003754970107600201
Google Scholar
[20]
D.B. Goldberg, Genetic algorithms in search optimization and machine learning, Addison-Wesley, San Francisco, (1989).
Google Scholar
[21]
J. Kennedy, R. Eberhart, Particle swarm optimization, in Proc. Fourth IEEE Int. Conf. Neural Netw., Perth, Australia, 4 (1995) 1942-(1948).
Google Scholar
[22]
R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997) 341-359.
Google Scholar
[23]
S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal and accurate design of fractional order digital differentiator – an evolutionary approach, IET Signal Process. 11 (2017) 181-196.
DOI: 10.1049/iet-spr.2016.0201
Google Scholar
[24]
S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm, Soft Comput. (2017) doi. 10. 1007/s00500-017-2595-6.
DOI: 10.1007/s00500-017-2595-6
Google Scholar
[25]
S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm, IET Signal Process. 10 (2016) 1135-1156.
DOI: 10.1049/iet-spr.2016.0298
Google Scholar
[26]
S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using harmony search algorithm, Int. J. Numer. Model. (2016) doi: 10. 1002/jnm. 2203.
DOI: 10.1002/jnm.2203
Google Scholar