A Heuristic Approach to Design Discrete Fractional Order Integrators without Using s-to-z Transform

Article Preview

Abstract:

In this paper, a heuristic optimization technique called Harmony Search Algorithm (HSA) is efficiently employed to design Infinite Impulse Response (IIR) Discrete Fractional Order Integrators (DFOIs). Unlike the methods reported in the literature, no discretization (s-to-z transform) operator is necessary to obtain the DFOIs by using the proposed approach. To investigate the design efficiency, the HSA-based DFOIs have been evaluated against the designs based on Real coded Genetic Algorithm (RGA), Particle Swarm Optimization (PSO), and Differential Evolution (DE) using different frequency response error metrics. The reliability in the performance of the proposed DFOIs are extensively investigated by conducting various statistical tests. Comparison of fitness convergence demonstrates that HSA achieves the near global optimal solution in the least number of iterations. Thus, HSA exhibits superior computational efficiency in solving this multimodal optimization problem. The proposed DFOIs also outperform the reported designs.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 261)

Pages:

386-393

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K.S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, New York, (1993).

Google Scholar

[2] B.J. West, M. Bologna, P. Grigolini, Physics of fractal operators, Springer Verlag, New York, (2003).

Google Scholar

[3] J-X. Wu, C-M. Li, Y-R. Ho, M-J. Wu, P-T. Huang, C-H. Lin, Peripheral arterial stenosis screening with a fractional-order integrator and info-gap decision-making, IEEE Sensors J. 16 (2016) 2691-2700.

DOI: 10.1109/jsen.2015.2513899

Google Scholar

[4] C.C. Tseng, S.L. Lee, Design of fractional order digital differentiator using radial basis function, IEEE Trans. Circuits Syst. -I: Regul. Pap. 57 (2010) 1708-1718.

DOI: 10.1109/tcsi.2009.2034808

Google Scholar

[5] Y.Q. Chen, B.M. Vinagre, I. Podlubny, Continued fraction expansion approaches to discretizing fractional order derivatives-an expository review, Nonlinear Dyn. 38 (2004) 155-170.

DOI: 10.1007/s11071-004-3752-x

Google Scholar

[6] Y. Ferdi, Computation of fractional order derivative and integral via power series expansion and signal modeling, Nonlinear Dyn. 46 (2006) 1-15.

DOI: 10.1007/s11071-005-9000-1

Google Scholar

[7] M. Gupta, P. Varshney, G.S. Visweswaran, Digital fractional-order differentiator and integrator models based on first-order and higher order operators, Int. J. Circuit Theor. Appl. 39 (2011) 461-474.

DOI: 10.1002/cta.650

Google Scholar

[8] B.M. Vinagre, Y.Q. Chen, I. Petras, Two direct Tustin discretization methods for fractional-order differentiator/integrator, J. Frankl. Inst. 340 (2003) 349-362.

DOI: 10.1016/j.jfranklin.2003.08.001

Google Scholar

[9] C.C. Tseng, Design of FIR and IIR fractional order Simpson digital integrators, Signal Process. 87 (2007) 1045-1057.

DOI: 10.1016/j.sigpro.2006.09.006

Google Scholar

[10] Y.Q. Chen, K.L. Moore, Discretization schemes for fractional-order differentiators and integrators, IEEE Trans. Circuits Syst. -I: Fundam. Theor. Appl., 49 (2002) 363-367.

DOI: 10.1109/81.989172

Google Scholar

[11] Y.Q. Chen, B.M. Vinagre, A new IIR-type digital fractional order differentiator, Signal Process. 83 (2003) 2359-2365.

DOI: 10.1016/s0165-1684(03)00188-9

Google Scholar

[12] R.S. Barbosa, J.A.T. Machado, M.F. Silva, Time domain design of fractional differintegrators using least-squares, Signal Process. 86 (2006) 2567-2581.

DOI: 10.1016/j.sigpro.2006.02.005

Google Scholar

[13] M. Romero, A.P. de Madrid, C. Manoso, B.M. Vinagre, IIR approximations to the fractional differentiator/integrator using Chebyshev polynomials theory, ISA Trans. 52 (2013) 461-468.

DOI: 10.1016/j.isatra.2013.02.002

Google Scholar

[14] M. Gupta, R. Yadav, Optimization of integer order integrators for deriving improved models of their fractional counterparts, J. Optim. article id. 142390 (2013).

DOI: 10.1155/2013/142390

Google Scholar

[15] R. Yadav, M. Gupta, New improved fractional order integrators using PSO optimization, Int. J. Electron. 102 (2015) 490-499.

DOI: 10.1080/00207217.2014.901424

Google Scholar

[16] B.T. Krishna, Studies of fractional order differentiators and integrators: a survey, Signal Process. 91 (2011) 386-426.

DOI: 10.1016/j.sigpro.2010.06.022

Google Scholar

[17] M. Gupta, R. Yadav, Design of improved fractional order integrators using indirect discretization method, Int. J. Comput. Appl. 59 (2012) 19-24.

DOI: 10.5120/9618-4260

Google Scholar

[18] F. Leulmi, Y. Ferdi, Improved digital rational approximation of the operator Sα using second-order s-to-z transform and signal modeling, Circuits Syst. Signal Process. 34 (2015) 1869-1891.

DOI: 10.1007/s00034-014-9928-9

Google Scholar

[19] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simul. 76 (2001) 60-68.

DOI: 10.1177/003754970107600201

Google Scholar

[20] D.B. Goldberg, Genetic algorithms in search optimization and machine learning, Addison-Wesley, San Francisco, (1989).

Google Scholar

[21] J. Kennedy, R. Eberhart, Particle swarm optimization, in Proc. Fourth IEEE Int. Conf. Neural Netw., Perth, Australia, 4 (1995) 1942-(1948).

Google Scholar

[22] R. Storn, K. Price, Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim. 11 (1997) 341-359.

Google Scholar

[23] S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal and accurate design of fractional order digital differentiator – an evolutionary approach, IET Signal Process. 11 (2017) 181-196.

DOI: 10.1049/iet-spr.2016.0201

Google Scholar

[24] S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm, Soft Comput. (2017) doi. 10. 1007/s00500-017-2595-6.

DOI: 10.1007/s00500-017-2595-6

Google Scholar

[25] S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband infinite impulse response fractional order digital integrators using colliding bodies optimisation algorithm, IET Signal Process. 10 (2016) 1135-1156.

DOI: 10.1049/iet-spr.2016.0298

Google Scholar

[26] S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using harmony search algorithm, Int. J. Numer. Model. (2016) doi: 10. 1002/jnm. 2203.

DOI: 10.1002/jnm.2203

Google Scholar