[1]
Diker, Evolventnije zaceplenyije sz uprjamimi zubcami, Organmetal, 1935. (in Russian).
Google Scholar
[2]
L. Szeniczei, Az általános fogazás, Királyi Magyar Egyetemi Nyomda, Budapest, 1941, pp.135-148. (in Hungarian).
Google Scholar
[3]
I. A. Bolotovsky, T.P. Bolotovskaya, G.S. Bocharov, V.I. Guryev, B.A. Kurlov, I. A: Merkuryev, V.E. Smirnov, Spravochnik po geometricheskomu raschotu evolventnih zubchatih i chervyachnih peredach, Mashinostroyenie, Moscow, (1963).
Google Scholar
[4]
H. Abderazek, D. Ferhat, I. Atamasovska, K. Boualem, A differential evolution algorithm for tooth profile optimization with respect to balancing specific sliding coefficients of involute cylindrical spur and helical gears, Advanced Mechanical Engineering, 7 (2015).
DOI: 10.1177/1687814015605008
Google Scholar
[5]
G. Niemann, Maschinenelemente, Band II, Springer Verlag, Berlin/Göttingen/Heidelberg, 1965. (in German).
Google Scholar
[6]
S. Baglioni, F. Cianetti, L. Landi, Influence of the addendum modification on spur gear efficiency, Mechanism and Machine Theory 49 (2012) 216-233.
DOI: 10.1016/j.mechmachtheory.2011.10.007
Google Scholar
[7]
H. Blok, Les temperatures des surface dans des conditions de graissagesonspression extreme, Second World Petroleum Congress, Paris, 1937. (in French).
Google Scholar
[8]
H. Winter, M Richter, Verzahnungswirkungsgrad und Fresstragfähigkeit von Hypoid und Schraubenradgetrieben, Antriebstechnik, 15 (1976) 211-218. (in German).
Google Scholar
[9]
Y. Terauchi, H. Nadano, Effect of tooth profile modification on the scoring resistance of spur gear, Wear, 80 (1982) 27-41.
DOI: 10.1016/0043-1648(82)90085-0
Google Scholar
[10]
H. Winter, H.J. Plewe, Calculation of slow speed wear of lubricated gears, Gear Technology, (1985) 8-18.
Google Scholar
[11]
ISO/TR 13989-1: 2000. Calculation of scuffing load capacity of cylindrical, bevel and hypoid gears – Part1: Flash temperature method.
DOI: 10.3403/02226672
Google Scholar