[1]
D.B. Johnson, Biomining – Biotechnologies for extracting and recovering metals from ores and waste materials, Curr. Opin. Biotechnol. 30 (2014) 24-31.
DOI: 10.1016/j.copbio.2014.04.008
Google Scholar
[2]
T. Saririchi, R.R. Azad, D. Arabian, A. Molaie, F. Nemati, On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores, Chemical Eng. J. 187 (2012).
DOI: 10.1016/j.cej.2010.10.013
Google Scholar
[3]
D. F. Haghshenas, B. Bonakdarpour, E.K. Alamdari, B. Nasernejad, Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors, Hydrometallurgy 111-112 (2012) 22-28.
DOI: 10.1016/j.hydromet.2011.09.010
Google Scholar
[4]
Y. Rodriguez, A. Ballester, M. L. Blazquez, F. Gonzalez, J.A. Munoz, Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite and sphalerite, Geomicrobiol. J. 20 (2003) 131-141.
DOI: 10.1080/01490450303880
Google Scholar
[5]
A. Sanhueza, I. J. Ferrer, T. Vargas, Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties, Hydrometallurgy 51 (1999) 115-129.
DOI: 10.1016/s0304-386x(98)00079-6
Google Scholar
[6]
T. Gehrke, J. Telegdi, D. Thierry, W. Sand, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Appl. Environ. Microbiol. 64 (1998), 2743-2747.
DOI: 10.1128/aem.64.7.2743-2747.1998
Google Scholar
[7]
G.V. Rao, V. N Misra, Utilization of low grade chromite ores of Orissa, Miner. Process. Technol. (2004), 32-35.
Google Scholar
[8]
K. Harneit, A. Göksel, D. Kock, Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, Hydrometallurgy 83 (2006) 245-254.
DOI: 10.1016/j.hydromet.2006.03.044
Google Scholar
[9]
A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, F.O. Glöckner, Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res. 41 (2013).
DOI: 10.1093/nar/gks808
Google Scholar
[10]
V.V. Kadnikova , D.A. Ivasenkob, A.V. Beletskya, A.V. Mardanova, E.V. Danilovac, N.V. Pimenovd, O.V. Karnachukb, and N. V. Ravin, Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit, Microbiology 85 (2016).
DOI: 10.1134/s0026261716060126
Google Scholar
[11]
D.E. Rawlings, H. Tributsch and G.S. Hansford, Reasons why Leptospirillum, -like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology 145 (1999).
DOI: 10.1099/13500872-145-1-5
Google Scholar
[12]
S.R. Ullrich, C. Gonzalez, A. Poehlein et al., Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum, Front. Microbiol. 7 (2016) 797.
DOI: 10.3389/fmicb.2016.00797
Google Scholar
[13]
D.B. Johnson, K.B. Hallberg, S. Hedrich, Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium Ferrovum myxofaciens, Appl. Environ. Microbiol. 80 (2014) 672-680.
DOI: 10.1128/aem.03230-13
Google Scholar
[14]
M.O. Schrenk, K.J. Edwards, R.M. Goodman, Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage, Science 279 (1998) 1519-1522.
DOI: 10.1126/science.279.5356.1519
Google Scholar
[15]
S. Kimura, C.G. Bryan, K.B. Hallberg, D.B. Johnson, Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol. 13 (2011), 2092–2104.
DOI: 10.1111/j.1462-2920.2011.02434.x
Google Scholar