Adhesion Studies of Microorganisms on Natural Ore Material

Article Preview

Abstract:

In the course of the decline of high-grade ore deposits, new effective and eco-friendly bioleaching techniques are of interest. In-situ leaching is an auspicious method, but composition of leaching community should be adapted to the respective external conditions and the ore material. In this study several sulfidic minerals were inoculated into acidic mine water of a mine in eastern Germany, housing members of well-known iron oxidizing bacteria like Acidithiobacillus, Leptospirillum and Ferrovum. The attachment tests were performed in batch and in a continuous way at different temperatures. The analysis of the extracted DNA from adhered cells showed an enrichment of Ferrovum spp. on chalcopyrite surface under in-situ conditions at 11°C. For laboratory batch conditions an accumulation of Leptospirillum spp. was detected for adhered cells probably due to the changes of the physicochemical parameter of the mine water. In more detailed analyses we aim to elucidate possible preferential attachment of the mine water community members to certain minerals.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

398-402

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D.B. Johnson, Biomining – Biotechnologies for extracting and recovering metals from ores and waste materials, Curr. Opin. Biotechnol. 30 (2014) 24-31.

DOI: 10.1016/j.copbio.2014.04.008

Google Scholar

[2] T. Saririchi, R.R. Azad, D. Arabian, A. Molaie, F. Nemati, On the optimization of sphalerite bioleaching; the inspection of intermittent irrigation, type of agglomeration, feed formulation and their interactions on the bioleaching of low-grade zinc sulfide ores, Chemical Eng. J. 187 (2012).

DOI: 10.1016/j.cej.2010.10.013

Google Scholar

[3] D. F. Haghshenas, B. Bonakdarpour, E.K. Alamdari, B. Nasernejad, Optimization of physicochemical parameters for bioleaching of sphalerite by Acidithiobacillus ferrooxidans using shaking bioreactors, Hydrometallurgy 111-112 (2012) 22-28.

DOI: 10.1016/j.hydromet.2011.09.010

Google Scholar

[4] Y. Rodriguez, A. Ballester, M. L. Blazquez, F. Gonzalez, J.A. Munoz, Study of bacterial attachment during the bioleaching of pyrite, chalcopyrite and sphalerite, Geomicrobiol. J. 20 (2003) 131-141.

DOI: 10.1080/01490450303880

Google Scholar

[5] A. Sanhueza, I. J. Ferrer, T. Vargas, Attachment of Thiobacillus ferrooxidans on synthetic pyrite of varying structural and electronic properties, Hydrometallurgy 51 (1999) 115-129.

DOI: 10.1016/s0304-386x(98)00079-6

Google Scholar

[6] T. Gehrke, J. Telegdi, D. Thierry, W. Sand, Importance of extracellular polymeric substances from Thiobacillus ferrooxidans for bioleaching, Appl. Environ. Microbiol. 64 (1998), 2743-2747.

DOI: 10.1128/aem.64.7.2743-2747.1998

Google Scholar

[7] G.V. Rao, V. N Misra, Utilization of low grade chromite ores of Orissa, Miner. Process. Technol. (2004), 32-35.

Google Scholar

[8] K. Harneit, A. Göksel, D. Kock, Adhesion to metal sulfide surfaces by cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans and Leptospirillum ferrooxidans, Hydrometallurgy 83 (2006) 245-254.

DOI: 10.1016/j.hydromet.2006.03.044

Google Scholar

[9] A. Klindworth, E. Pruesse, T. Schweer, J. Peplies, C. Quast, M. Horn, F.O. Glöckner, Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Res. 41 (2013).

DOI: 10.1093/nar/gks808

Google Scholar

[10] V.V. Kadnikova , D.A. Ivasenkob, A.V. Beletskya, A.V. Mardanova, E.V. Danilovac, N.V. Pimenovd, O.V. Karnachukb, and N. V. Ravin, Effect of metal concentration on the microbial community in acid mine drainage of a polysulfide ore deposit, Microbiology 85 (2016).

DOI: 10.1134/s0026261716060126

Google Scholar

[11] D.E. Rawlings, H. Tributsch and G.S. Hansford, Reasons why Leptospirillum, -like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores, Microbiology 145 (1999).

DOI: 10.1099/13500872-145-1-5

Google Scholar

[12] S.R. Ullrich, C. Gonzalez, A. Poehlein et al., Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile Ferrovum, Front. Microbiol. 7 (2016) 797.

DOI: 10.3389/fmicb.2016.00797

Google Scholar

[13] D.B. Johnson, K.B. Hallberg, S. Hedrich, Uncovering a microbial enigma: isolation and characterization of the streamer-generating, iron-oxidizing, acidophilic bacterium Ferrovum myxofaciens, Appl. Environ. Microbiol. 80 (2014) 672-680.

DOI: 10.1128/aem.03230-13

Google Scholar

[14] M.O. Schrenk, K.J. Edwards, R.M. Goodman, Distribution of Thiobacillus ferrooxidans and Leptospirillum ferrooxidans: implications for generation of acid mine drainage, Science 279 (1998) 1519-1522.

DOI: 10.1126/science.279.5356.1519

Google Scholar

[15] S. Kimura, C.G. Bryan, K.B. Hallberg, D.B. Johnson, Biodiversity and geochemistry of an extremely acidic, low-temperature subterranean environment sustained by chemolithotrophy, Environ. Microbiol. 13 (2011), 2092–2104.

DOI: 10.1111/j.1462-2920.2011.02434.x

Google Scholar