[1]
J. Wang, H. Zhao, W. Qin, Industrial Practice of Biohydrometallurgy in Zambia. 43(43) (2015) 1-10.
Google Scholar
[2]
Q. Hu, Y.L. Liang, H.Q. Yin, Metagenomic Insights into the Microbial Community Diversity between Leaching Heap and Acid Mine Drainage, Adv. Mater. Res. 825 (2013) 141-144.
DOI: 10.4028/www.scientific.net/amr.825.141
Google Scholar
[3]
P. Delvasto, A. Valverde, A. Ballester, Diversity and activity of phosphate bioleaching bacteria from a high-phosphorus iron ore, Hydrometallurgy. 92 (2008) 124-129.
DOI: 10.1016/j.hydromet.2008.02.007
Google Scholar
[4]
A. Uria, J. Piel, Cultivation-independent approaches to investigate the chemistry of marine symbiotic bacteria, Phytochem. Rev. 8 (2009) 401-414.
DOI: 10.1007/s11101-009-9127-7
Google Scholar
[5]
E.R. Mardis, The impact of next-generation sequencing technology on genetics, Trends Genet. 24 (2008) 133-141.
DOI: 10.1016/j.tig.2007.12.007
Google Scholar
[6]
C. Luo, D. Tsementzi, N. Kyrpides, Direct Comparisons of Illumina vs. Roche 454 Sequencing Technologies on the Same Microbial Community DNA Sample, Plos One. 7 (2012) e30087.
DOI: 10.1371/journal.pone.0030087
Google Scholar
[7]
L. Wang, B. Li, J. Zhu, Review of High-throughput Sequencing Techniques on Constructed Wetland Microbial Diversity, Chin. Agricult. Sci. Bulletin (2016).
Google Scholar
[8]
Y. Xiao, X. Liu, L. Ma, Microbial communities from different subsystems in biological heap leaching system play different roles in iron and sulfur metabolisms, Appl. Microbiol. Biotechnol. 100 (2016) 6871-6880.
DOI: 10.1007/s00253-016-7537-1
Google Scholar
[9]
J.L. Kuang, L.N. Huang, L.X. Chen, Contemporary environmental variation determines microbial diversity patterns in acid mine drainage, ISME J. 7 (2013) 1038.
DOI: 10.1038/ismej.2012.139
Google Scholar
[10]
X. Yunhua, X. Yongdong, D. Weiling, The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system, Appl. Microbiol. Biotechnol. 99 (2015) 10311-22.
DOI: 10.1007/s00253-015-6881-x
Google Scholar
[11]
M. Boon, M. Snijder, G.S. Hansford, The oxidation kinetics of zinc sulphide with Thiobacillus ferrooxidans, Hydrometallurgy. 48 (1998) 171-186.
DOI: 10.1016/s0304-386x(97)00081-9
Google Scholar
[12]
Y. Jia, H. Sun, D. Chen, Characterization of microbial community in industrial bioleaching heap of copper sulfide ore at Monywa mine, Myanmar, Hydrometallurgy. 164 (2016) 355-361.
DOI: 10.1016/j.hydromet.2016.07.007
Google Scholar
[13]
Y. Chen, J. Li, L. Chen, Biogeochemical Processes Governing Natural Pyrite Oxidation and Release of Acid Metalliferous Drainage, Environ. Sci. Technol. 48 (2014) 5537.
DOI: 10.1021/es500154z
Google Scholar
[14]
A.P. Florentino, A.J. Stams, I. Sánchez-Andrea, Genome Sequence of Desulfurella amilsii Strain TR1 and Comparative Genomics of Desulfurellaceae Family, Front. Microbiol. 8 (2017) 222.
DOI: 10.3389/fmicb.2017.00222
Google Scholar
[15]
S. Marín, M. Acosta, P. Galleguillos, Is the growth of microorganisms limited by carbon availability during chalcopyrite bioleaching?, Hydrometallurgy, (2016).
DOI: 10.1016/j.hydromet.2016.10.003
Google Scholar
[16]
M. Acosta, P.A. Galleguillos, S. Marín, C. Chibwana, H. Strauss, C. Demergasso Blue-Copper Proteins: Expression of Coding Genes from Sulfobacillus spp. and Iron Oxidation in Column Bioleaching Tests, Adv. Mater. Res. 1130 (2015) 333-337.
DOI: 10.4028/www.scientific.net/amr.1130.333
Google Scholar
[17]
C. Ai, S. Mccarthy, V. Eckrich, Increased acid resistance of the archaeon, Metallosphaera sedula by adaptive laboratory evolution, J. Indust. Microbiol. Biotechnol. 43 (2016) 1-11.
DOI: 10.1007/s10295-016-1812-0
Google Scholar
[18]
Z.S. Hua, Y.J. Han, L.X. Chen, Ecological roles of dominant and rare prokaryotes in acid mine drainage revealed by metagenomics and metatranscriptomics, ISME J. 9 (2014) 1280.
DOI: 10.1038/ismej.2014.212
Google Scholar