Metagenome-Derived Draft Genome Sequence of Acidithiobacillus ferrooxidans RV1 from an Abandoned Gold Tailing in Neuquén, Argentina

Article Preview

Abstract:

In this work we report the metagenome-derived draft genomic sequence of an enrichment culture dominated by A. ferrooxidans obtained from an airlift bioreactor inoculated with the microbial consortium recovered from the “Relave Viejo” tailing. The genome of this culture was assembled de-novo and by reference, generating a consensus assembly of 3.0 Mb. On the basis of 16S rRNA (100 % identity), average nucleotide identity analysis (99.33% identity) and in silico DNA-DNA hybridization against A. ferrooxidans ATCC 23270T (97.9%), the recovered genome is confirmed to pertain to A. ferrooxidans species. Comparative genomics results are presented to uncover the genetic traits of the variant surviving lime treatment and to further explore the genomic diversity of these model iron oxidizing species.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

439-442

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Nuñez, P.C. Covarrubias, A. Moya-Beltrán, F. Issotta, J. Atavales, L.G. Acuña, D.B. Johnson, R. Quatrini, Detection, identification and typing of Acidithiobacillus species and strains: a review, Res. Microbiol. 167 (2016) 555–567.

DOI: 10.1016/j.resmic.2016.05.006

Google Scholar

[2] D.E. Rawlings, The molecular genetics of Thiobacillus ferrooxidans and other mesophilic, acidophilic, chemolithotrophic, iron- or sulfur-oxidizing bacteria, Hydrometallurgy. 59 (2001) 187-201.

DOI: 10.1016/s0304-386x(00)00182-1

Google Scholar

[3] D.B. Johnson, Biomining-biotechnologies for extracting and recovering metals from ores and waste materials, Curr. Opin. Biotechnol. 30 (2014) 24-31.

DOI: 10.1016/j.copbio.2014.04.008

Google Scholar

[4] H. Nuñez, A. Moya-Beltrán, P.C. Covarrubias, F. Issotta, J.P. Cardenas, M. Gonzalez, J. Atavales, L.G. Acuña, D.B. Johnson, R. Quatrini, Molecular systematics of the genus Acidithiobacillus: insights into the phylogenetic structure and diversification of the taxon, Front. Microbiol. 8 (2017).

DOI: 10.3389/fmicb.2017.00030

Google Scholar

[5] R. Ulloa, H. Nuñez, F. Issotta, A. Moya-Beltrán, R. Quatrini, A. Giaveno, Temporal profiling of the microbial community from the lime-treated abandoned mine tailing Relave Viejo, in Neuquén, Argentina. International Symposium of Microbial Ecology (2016).

DOI: 10.4028/www.scientific.net/ssp.262.439

Google Scholar

[6] A. Giaveno, L. Lavalle, P. Chiacchiarini, E.R. Donati, Airlift Reactors: characterization and applications in Biohydrometallurgy, In: E.R. Donati, W. Sand (Eds. ), Microbial Processing of Metal Sulfides, Springer, Netherlands, 2007, pp.169-191.

DOI: 10.1007/1-4020-5589-7_9

Google Scholar

[7] P.A. Nieto, P.C. Covarrubias, E. Jedlicki, D.S. Holmes, R. Quatrini, Selection and evaluation of reference genes for improved interrogation of microbial transcriptomes: case study with the extremophile Acidithiobacillus ferrooxidans, BMC Mol. Biol. 10 (2009).

DOI: 10.1186/1471-2199-10-63

Google Scholar

[8] F. Issotta, P.A. Galleguillos, A. Moya-Beltrán, C.S. Davis-Belmar, G. Rautenbach, P.C. Covarrubias, M. Acosta, F.J. Ossandon, Y. Contador , D.S. Holmes, S. Marín-Eliantonio, R. Quatrini, C. Demergasso, Draft genome sequence of chloride-tolerant Leptospirillum ferriphilum Sp-Cl from industrial bioleaching operations in northern Chile, Stand. Genomic. Sci. 11 (2016).

DOI: 10.1186/s40793-016-0142-1

Google Scholar

[9] J. Raes, J.O. Korbel, M.J. Lercher, C. von Mering, P. Bork, Prediction of effective genome size in metagenomic samples, Genome. Biol. 8 (2007) R10.

DOI: 10.1186/gb-2007-8-1-r10

Google Scholar

[10] J. Valdés, I. Pedroso, R. Quatrini, R.J. Dodson, H. Tettelin, R. Blake, J.A. Eisen, D.S. Holmes, Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications, BMC Genomics. 9 (2008) 597.

DOI: 10.1186/1471-2164-9-597

Google Scholar

[11] P. Chen, L. Yan, Z. Wu, R. Xu, S. Li, N. Wang, N. Liang, H. Li, Draft genome sequence of extremely acidophilic bacterium Acidithiobacillus ferrooxidans DLC-5 isolated from acid mine drainage in Northeast China, Genom. Data 6 (2015) 267-268.

DOI: 10.1016/j.gdata.2015.10.018

Google Scholar

[12] L. Yan, S. Zhang, W. Wang, H. Hu, Y. Wang, G. Yu, P. Chen, Draft genome sequence of Acidithiobacillus ferrooxidans YQH-1, Genom. Data. 6 (2015) 269-270.

DOI: 10.1016/j.gdata.2015.10.009

Google Scholar

[13] R.J. Whitaker, Allopatric origins of microbial species, Phil. Trans. R. Soc. B: Biological Sciences, 361 (2006) 1975–(1984).

DOI: 10.1098/rstb.2006.1927

Google Scholar

[14] M.J. Penninckx, M.T. Elskens, Metabolism and functions of glutathione in microorganisms, Adv. Microb. Physiol. 34 (1993) 239-301.

Google Scholar

[15] T.H. Tani, A. Khodursky, R.M. Blumenthal, P.O. Brown, R.G. Matthews, Adaptation to famine: a family of stationary-phase genes revealed by microarray analysis, Proc. Natl. Acad. Sci. USA. 99 (2002) 13471-13476.

DOI: 10.1073/pnas.212510999

Google Scholar