Genomic Characterization of the Arsenic-Tolerant Actinobacterium, Rhodococcus erythropolis S43

Article Preview

Abstract:

Rhodococcus erythropolis S43 is an actinobacterium isolated from an arsenic-contaminated soil sample, collected from an old smelter site, including an arsenic smelter, in Germany. This strain has unique features as compared to the other members of the species, namely resistance to elevated concentrations of arsenic. Here, we present the microbiological features and genomic properties of this biotechnologically relevant strain. The 6,812,940 bp draft genome is arranged into 264 scaffolds of 848 contigs. It possesses 62.5% of CG content and comprises 6,040 coding sequences and 49 tRNA genes. Bioinformatic genome analysis showed the presence of arsenic-resistance genes. A complete ars operon was found containing the arsACDR cluster coding for ArsA (efflux pump ATPase), ArsC (arsenate reductase), ArsD (chaperone) and ArsR (ars operon regulator). Our results show that the arsC mRNA level significantly increased in response to arsenite and arsenate exposure, suggesting its involvement in the arsenic resistance phenotype of strain S43. In addition, this strain showed to have a plethora of genes coding for proteins involved in oxidative-stress response, including catalase, super-oxide dismutase, glutathione peroxidase-related genes, thioredoxin and thioredoxin reductase, suggesting it is highly tolerant to oxidative conditions. Finally, genes for radiation resistance, biodesulfurization, and oil and phenol degrading pathways were also detected. Altogether this data make R. erythropolis S43 a good candidate microorganism for bioremediation of highly contaminated environments and other industrial applications.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 262)

Pages:

660-663

Citation:

Online since:

August 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Ait Barka, P. Vatsa, L. Sanchez, N. Gaveau-Vaillant, C. Jacquard, H.P. Klenk, C. Clément, Y. Ouhdouch, G. van Wezel, Taxonomy, Physiology, and Natural Products of Actinobacteria. Microbiol, Mol. Biol. Rev., 80(1) (2016) 1-43.

DOI: 10.1128/mmbr.00019-15

Google Scholar

[2] K.S. Bell, J.C. Philp, D. Aw, N. Christofi, The genus Rhodococcus, J. Appl. Microbiol. 85 (1998) 195-210.

DOI: 10.1046/j.1365-2672.1998.00525.x

Google Scholar

[3] A. Shevtsov, P. Tarlykov, E. Zholdybayeva, D. Momynkulov, A. Sarsenova, N. Moldagulova, K. Momynaliev, Draft genome sequence of Rhodococcus erythropolis DN1, a crude oil biodegrader, Genome Announc. 1 (2013).

DOI: 10.1128/genomea.00846-13

Google Scholar

[4] H. Strnad, M. Patek, J. Fousek, J. Szokol, P. Ulbrich, J. Nesvera, V. Paces, C. Vlcek, Genome sequence of Rhodococcus erythropolis strain CCM2595, a phenol derivative-degrading bacterium, Genome Announc. 2 (2014).

DOI: 10.1128/genomea.00208-14

Google Scholar

[5] R. Gouvêa, T. Domingues, I. Soares de Melo, R. Mendes, Whole-genome shotgun sequencing of Rhodococcus erythropolis strain P27, a highly radiation-resistant actinomycete from Antarctica, Genome Announc. 1 (2013).

DOI: 10.1128/genomea.00763-13

Google Scholar

[6] M. Sultana, S. Volger, K. Zargar, A. Schmidt, C. Saltikoy, J. Seifert, M. Schlömann, New clusters of arsenite oxidase and unusual bacterial groups in enrichments from arsenic-contaminated soil. Arch. Microbiol. 194 (2012) 623-635.

DOI: 10.1007/s00203-011-0777-7

Google Scholar

[7] Information on http: /www. ncbi. nlm. nih. gov/books/NBK174280.

Google Scholar

[8] R.K. Aziz, D. Bartels, A. Best, M. DeJongh, T. Disz, R.A. Edwards, O. Zagnitko, The RAST Server: Rapid Annotations using Subsystems Technology, BMC Genomics 9 (2008).

DOI: 10.1186/1471-2164-9-75

Google Scholar

[9] S.F. Altschul, T.L. Madden, A.A. Schäffer, J. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucl. Acid. Res. 25 (1997) 3389–3402.

DOI: 10.1093/nar/25.17.3389

Google Scholar

[10] T. Carver, S.R. Harris, M. Berriman, J. Parkhil, J. A McQuillan, Artemis: an integrated platform for visualization and analysis of high-throughput sequence-based experimental data. Bioinformatics. 28 (2012) 464-469.

DOI: 10.1093/bioinformatics/btr703

Google Scholar

[11] F. Tao, P. Zhao, Q. Li, S. Fei, Y. Bo, M. Cuiqing, H. Tang, C. Tai, W. Geng, P. Xu, Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential, J. Bacteriol. 193 (2011) 6422-6423.

DOI: 10.1128/jb.06154-11

Google Scholar

[12] A. Achour-Rokbani, A. Cordi, P. Poupin, P. Bauda, P. Billard, Characterization of the ars Gene Cluster from extremely Arsenic-resistant Mycobacterium sp. Strain A33, Appl. Environ. Microbiol. 76 (2010) 948-955.

DOI: 10.1128/aem.01738-09

Google Scholar

[13] D. Slyemi, V. Bonnefoy, How prokaryotes deal with arsenic. Environ. Microbiol. Rep. 4(6) (2012) 571-586.

Google Scholar