Fabrication and Characterization of Photocatalyst Coatings by Heat Treatment in Carbon Powder for TiC Coatings

Article Preview

Abstract:

Photocatalyst coatings on alumina (Al2O3) balls had been successfully fabricated by mechanical coating technique, with titanium carbide (TiC) powder and subsequent heat treatment in carbon powder. The effect of heat treatment conditions in carbon powder on the formed compounds, surface morphology and photocatalytic activity of photocatalyst coatings was investigated. XRD results show that the formed compounds change with increasing the heat treatment temperature in carbon powder, and rutile TiO2 on the surface of TiC coatings at 1073 K and 1173 K. The generated oxygen vacancies confirmed by XPS measurement, are in favor of narrowing band gap to enhance the visible-light photocatalytic activity of photocatalyst coatings. The photocatalytic activity of photocatalyst coatings has been effectively enhanced, and the samples fabricated at 1073 K and 1173 K for 2 h show higher activity. The fabrication strategy provides us a facile preparation procedure of visible-light responsive photocatalyst coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 263)

Pages:

137-141

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Kumar and L.G. Devi. J. Phys. Chem. A 115 (2011) 13211-13241.

Google Scholar

[2] A. Fujishima, X. Zhang and D.A. Tryk. Surf. Sci. Rep. 63 (2008) 515-582.

Google Scholar

[3] M.V. Dozzi and E. Selli. J. Photoch. Photobio. C 14 (2013) 13-18.

Google Scholar

[4] X. Chen, S. Shen, L. Guo and S.S. Mao. Chem. Rev. 110 (2010) 6503-6570.

Google Scholar

[5] Y. Li and J. Zhang. Laser Photonics Rev. 4 (2010) 517-528.

Google Scholar

[6] Z. Chen and K. Zhou. Surf. Coat. Technol. 263 (2015) 61-65.

Google Scholar

[7] J. Hensel, G. Wang, Y. Li and J. Zhang. Nano. Lett. 10 (2010) 478-483.

Google Scholar

[8] Y. Gai, J. Li, S. Li, J. Xia and S. Wei. Phys. Rev. Lett. 102 (2009) 036402-1-4.

Google Scholar

[9] M. Xu, P. Da, H. Wu, D. Zhao and G. Zheng. Nano Lett. 12 (2012) 1503-1508.

Google Scholar

[10] L. Kong, C. Wang, H. Zheng, X. Zhang and Y. Liu. J. Phys. Chem. C 119 (2015) 16623-16632.

Google Scholar

[11] C. Chen, J. Shieh, S. Hsieh, C. Kuo and H. Liao. Acta. Mater. 60 (2012) 6429-6439.

Google Scholar

[12] X. Chen, L. Liu, P. Yu and S. Mao. Science 331 (2011) 746-750.

Google Scholar

[13] Y. Shao, J, Liu, Y. Wang and Y. Lin. J. Mater. Chem. 19 (2009) 46-59.

Google Scholar

[14] H. Hwu and J. Chen. Chem. Rev. 105 (2005) 185-212.

Google Scholar

[15] A. Ignaszak, C. Song, W. Zhu, J. Zhang, A. Bauer, R. Baker, V. Neburchilov, S. Ye and S. Campbell. Electrochim. Acta 69 (2012) 397-405.

DOI: 10.1016/j.electacta.2012.03.039

Google Scholar

[16] Y. Li and T. Ishigaki. Chem. Phys. Lett. 367 (2003) 561-565.

Google Scholar

[17] S. Sofiane and M. Bilel. J. Photoch. Photobio. A 324 (2016) 126-133.

Google Scholar

[18] Y. Lu, S. Guan, L. Hao and H. Yoshida. Coatings. 5 (2015) 425-464.

Google Scholar

[19] S. Guan, L. Hao, H. Yoshida, F. Pan, H. Asanuma and Y. Lu. Mater. Lett. 167 (2016) 43-46.

Google Scholar

[20] S. Jiao, X. Ning, K. Huang and H. Zhu. Pure. Appl. Chem. 82 (2010) 1691-1699.

Google Scholar

[21] X. Peng and A. Chen. J. Mater. Chem. 14 (2004) 2542-2548.

Google Scholar