Evaluation and Suppression of Microcystis aeruginosa by Photocatalyst Coatings with Visible Light Photocatalytic Activity

Article Preview

Abstract:

Photocatalyst coatings had been successfully fabricated by molten salt treatment at 673 K for 3 h for titanium (Ti) coatings, which coated on alumina (Al2O3) balls by mechanical coating technique with Ti powder. The influence of molten salt treatment on the formed compounds, surface morphology and photocatalytic activity under visible light irradiation on degradation of MB solution and suppression of Microcystis aeruginosa of photocatalyst coatings was investigated. XRD results show that potassium titanate (K2Ti6O13) forms on the surface of Ti coatings during molten salt treatment. The visible light photocatalytic activity of photocatalyst coatings has been effectively enhanced by molten salt treatment.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 263)

Pages:

148-151

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Legrini, E. Oliveros, A.M. Braun. Chem. Rev. 93 (1993) 671–698.

Google Scholar

[2] R.M. Dawson. Toxicon 36 (1998) 953-962.

Google Scholar

[3] M.R. Hoffmann, S.T. Martin, W. Choi and D.W. Bahnemann. Chem. Rev. 95 (1995) 69–96.

Google Scholar

[4] S.G. Kumar and L.G. Devi. J. Phys. Chem. A 115 (2011) 13211-13241.

Google Scholar

[5] A. Fujishima, X. Zhang and D.A. Tryk. Surf. Sci. Rep. 63 (2008) 515-582.

Google Scholar

[6] M.V. Dozzi and E. Selli. J. Photoch. Photobio. C 14 (2013) 13-18.

Google Scholar

[7] X. Chen, S. Shen, L. Guo and S.S. Mao. Chem. Rev. 110 (2010) 6503-6570.

Google Scholar

[8] Y. Li and J. Zhang. Laser Photonics Rev. 4 (2010) 517-528.

Google Scholar

[9] Z. Chen and K. Zhou. Surf. Coat. Technol. 263 (2015) 61-65.

Google Scholar

[10] J. Hensel, G. Wang, Y. Li and J. Zhang. Nano. Lett. 10 (2010) 478-483.

Google Scholar

[11] Y. Gai, J. Li, S. Li, J. Xia and S. Wei. Phys. Rev. Lett. 102 (2009) 036402-1-4.

Google Scholar

[12] S. Tawkaew, M. Chareonpanich and S. Supothina. Mater. Chem. Phys. 111 (2008) 232-237.

Google Scholar

[13] E.V. Tretyachenko, A.V. Gorokhovsky, G.Y. Yurkov, F.S. Fedorov, M.A. Vikulova, D.S. Kovaleva and E.E. Orozaliev. Particuology 17 (2014) 22-28.

DOI: 10.1016/j.partic.2013.12.002

Google Scholar

[14] Y. Shao, J, Liu, Y. Wang and Y. Lin. J. Mater. Chem. 19 (2009) 46-59.

Google Scholar

[15] H. Hwu and J. Chen. Chem. Rev. 105 (2005) 185-212.

Google Scholar

[16] Y. Inoue, T. Kubokawa and K. Sato. J. Phys. Chem. 95 (1991) 4059-4063.

Google Scholar

[17] W. Krengvirat, S. Sreekantan, A.M. Noor, G. Kawamura, H. Muto and A. Matsuda. Electrochim. Acta 89 (2013) 585-593.

DOI: 10.1016/j.electacta.2012.11.079

Google Scholar

[18] N. Masaki, S. Uchida, H. Yamane and T. Sato. J. Mater. Sci. 35 (2000) 3307-3311.

Google Scholar

[19] Y. Lu, S. Guan, L. Hao and H. Yoshida. Coatings. 5 (2015) 425-464.

Google Scholar

[20] S. Takaya, Y. Lu, S. Guan, K. Miyazawa, H. Yoshida and H. Asanuma. Surf. Coat. Tech. 275 (2015) 260-263.

Google Scholar

[21] G. Du, Q. Chen, P. Han, Y. Yu and L. Peng. Phys. Rev. 67 (2003) 035323-1-7.

Google Scholar

[22] Y. Hirakawa, Y. Lu, H. Yoshida, K. Matsuzaka, L. Hao and H. Sato. J. Japan Inst. Met. Mater. 77 (2013) 287-293.

Google Scholar

[23] Y. Lu, K. Matsuzaka, L. Hao, Y. Hirakawa, H. Yoshida and F. Pan. Mater. Sci. Semicond. Process. 16 (2013) 1949-(1956).

Google Scholar

[24] X. Yu, J. Zhou, Z. Wang and W. Cai. J. Photochem. Photobio. B 101 (2010) 265-270.

Google Scholar