Computational Identification of a New Form of Li2MnSiO4 for Battery Applications

Article Preview

Abstract:

The reversibility of phase transformations in Li2MnSiO4 and related materials during charge/discharge of the material is an important factor to enable the practical application of the cathode materials. However, the stability of this material is still unattainable. Here we report the computational identification of a new form of Li2MnSiO4 as a stable candidate with acceptable characteristics. The stability could arise due to the presence of the three-dimensional structure of the inorganic framework. The presence of a structure with a compact unit cell forms the basis for high capacity. Surprisingly it was found to have a stable analogue occurring in nature – Na2CaSiO4 with the same structure. Using this information the possible routes of obtaining such material are presented. The prediction of such material has been not found in the literature previously. Of course the problems such as phase transformations upon delithiation may exist, and to check the data the experimental and computer studies needed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 263)

Pages:

160-164

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Andre, S. -J. Kim, P. Lamp, S.F. Lux, F. Maglia, O. Paschos, B. Stiaszny: J. Mater. Chem. A Vol. 3 (2015), p.6709.

DOI: 10.1039/c5ta00361j

Google Scholar

[2] R. Dominko, M. Bele, M. Gaberscek, et al.: Electrochemistry Communications Vol. 8 Iss. 2 (2006), p.217.

Google Scholar

[3] A. Nytén, S. Kamali, L. Häggström, T. Gustafsson, J.O. Thomas: J. Mater. Chem. Vol. 16 (2006), p.2266.

Google Scholar

[4] R.J. Dominko: J. Power Sources Vol. 184 (2008), p.462.

Google Scholar

[5] C. Sirisopanaporn, C. Masquelier, P.G. Bruce, A.R. Armstrong, R.J. Dominko: J. Am. Chem. Soc. Vol. 133 (2011), p.1263.

Google Scholar

[6] A.R. Armstrong, N. Kuganathan, M.S. Islam, P.G. Bruce: J. Am. Chem. Soc. Vol. 133 (2011), p.13031.

Google Scholar

[7] M.S. Islam, R. Dominko, C. Masquelier, C. Sirisopanaporn, A.R. Armstrong and P.G. Bruce: J. Mater. Chem. Vol. 21 (2011), p.9811.

DOI: 10.1039/c1jm10312a

Google Scholar

[8] J.P. Perdew, K. Burke, M. Ernzerhof: Phys. Rev. Lett. Vol. 77 (1999), p.3865.

Google Scholar

[9] X. Gonze, B. Amadon, P.M. Anglade, J. -M. Beuken, F. Bottin, P. Boulanger, F. Bruneval, D. Caliste, R. Caracas, M. Cote, T. Deutsch, L. Genovese, Ph. Ghosez, M. Giantomassi, S. Goedecker, D. Hamann, P. Hermet, F. Jollet, G. Jomard, S. Leroux, M. Mancini, S. Mazevet, M.J.T. Oliveira, G. Onida, Y. Pouillon, T. Rangel, G. -M. Rignanese, D. Sangalli, R. Shaltaf, M. Torrent, M.J. Verstraete, G. Zérah, J.W. Zwanziger: Computer Physics Communications Vol. 180 (2009).

DOI: 10.1016/j.cpc.2009.07.007

Google Scholar

[10] H. J. Monkhorst, J. D. Pack: Phys. Rev. B Vol. 13 (1976), p.5188.

Google Scholar

[11] A. Jain, S.P. Ong, G. Hautier, W. Chen, W.D. Richards, S. Dacek, et al.: APL Mater. Vol. 1, Iss. 1, (2013), p.011002.

Google Scholar

[12] V.A. Blatov: IUCr CompComm Newsletter Vol. 7 (2006), p.4.

Google Scholar

[13] H. Lee, S. D. Park, J. Moon, H. Lee, K. Cho, M. Cho, S. Y. Kim: Chem. Mater. Vol. 26 (2014), p.3896.

Google Scholar

[14] H. Chen, G. Hautier, A. Jain, C. Moore, B. Kang, R. Doe, L. Wu, Y. Zhu, Y. Tang, et al.: Chem. Mater. Vol. 24 (2012), p. (2009).

Google Scholar

[15] Y. Zhao, C. Ning, J. Chang: Journal of Sol-Gel Science and Technology Vol. 52 (2009), p.69.

Google Scholar

[16] E. J. Harmsen: Z. Kristallogr. Krist. - Crystalline Materials Vol. 100 (1939), p.208.

Google Scholar