[1]
M. J. Murphy, R. M. Kuklo. Fundamentals of Shaped Charge Penetration in Concrete[C]. 18th International Symposium on Ballistics, San Antonio, U. S. A., 1999: 1057–1064.
Google Scholar
[2]
A. D. Resnyanski, A. E. Wildegger-Gaissmaier. Study of Borehole Diameter in Concrete due to the Shaped Charge Jet Penetration[C]. 20th International Symposium on Ballistics, Orlando, U. S. A., 2002: 957–963.
Google Scholar
[3]
E. L. Baker, A. S. Daniels, K. W. Ng, V. O. Martin, J. P. Orosz. Barnie: a Unitary Demolition Warhead[C]. 19th International Symposium of Ballistics, Interlaken, Switzerland, 2001: 569-574.
Google Scholar
[4]
D. Davison, D. Pratt. Perforator with Energetic Liner[C]. 26th International Symposium on Ballistics, Miami, U. S. A., 2011: 123-131.
Google Scholar
[5]
D. W. Baum, R. M. Kuklo, J. W. Routh, S. C. Simonson. Simultaneous Multiple-Jet Impacts in Concrete-Experiments and Advanced Computational Simulations[C]. 18th International Symposium on Ballistics, San Antonio, U. S. A., (1999).
Google Scholar
[6]
M. J. Murphy, D. W. Baum, R. M. Kuklo, S. C. Simonson. Effect of Multiple and Delayed Jet Impact and Penetration on Concrete Target Borehole Diameter[C]. 19th International Symposium of Ballistics, Interlaken, Switzerland, 2001: 1553-1559.
Google Scholar
[7]
M. J. Murphy, R. M. Kuklo, T. A. Rambur, L. L. Switzer, M. A. Summers. Single and Multiple Jet Penetration Experiments into Geologic Materials[C]. 21st International Symposium of Ballistics, Adelaide, South Australia, 2004: 41-48.
Google Scholar
[8]
P. Pincosy, M. J. Murphy. Calculated Concrete Target Damage by Multiple Rod Impact and Penetration[C]. 23rd International Symposium of Ballistics, Tarragona, Spain, 2007: 1453-1460.
Google Scholar
[9]
F. J. Moster, C. J. Terblanche. Investigation of Pre-Cursor Charge Configurations and Designs to Allow for Off-Axis Motion of a Follow-Through Penetrator in a Target[C]. 23rd International Symposium of Ballistics, Tarragona, Spain, 2007: 161-168.
Google Scholar
[10]
M. J. Murphy. Survey of the Influence of Velocity and Material on the Projectile Energy/Target Hole Volume Relationship[C]. 10th International Symposium of Ballistics, San Diego, U. S. A., (1987).
Google Scholar
[11]
T. Szendrei. Link Between Axial Penetration and Radial Crater Expansion in Hypervelocity Impact[C]. 17th International Symposium of Ballistics, Midrand, South Africa, 1998: 25-32.
Google Scholar
[12]
T. Szendrei. Analytical Model of Crater Formation by Jet Impact and its Application to Calculation of Penetration Curves and Hold Profiles[C]. 7th nternational Symposium of Ballistics, The Hague, The Netherlands, 1983: 575-583.
Google Scholar
[13]
R. Subramanian, S. Satapathy, D. Littlefield. Observations on the Ratio of Impact Energy to Crater Volume(E/V) in Semi-Infinite Targets[C]. 19th International Symposium on Ballistics, Interlaken, Switzerland, 2001: 1273–1280.
Google Scholar
[14]
N. J. Lynch, R. Subramanian, S. Brown, J. Alston. The Influence of Penetrator Geometry and Impact Velocity on the Formation of Crater Volume in Semi-Infinite Targets[C]. 19th International Symposium on Ballistics, Interlaken, Switzerland, 2001: 1265–1271.
Google Scholar
[15]
T. Szendrei. Analytical Model for High-Velocity Impact Cratering with Material Strengths: Extensions and Validation[C]. 15th International Symposium on Ballistics, Jerusalem, Israel, 1995: 123–131.
Google Scholar
[16]
P. T. Zheng, T. Yang, Z. Z. Qin, B. H. Kou. Based on improved SDM model for penetration of shaped charge jet concrete medium pass calculation [J]. Projectiles, rockets, missiles and guidance journal, 2006, 26 (2): 574-577, 581.
Google Scholar
[17]
W. Schwartz. Modified SDM Model for the Calculation of Shaped Charge HoleProfiles[J]. Propellants, Explosives, Pyrotechnics, 1994, 19(4): 192-201.
DOI: 10.1002/prep.19940190408
Google Scholar
[18]
G. I. Shinar, N. Barnea, M. Ravid, E. Hirsch. An Analytical Model for the Cratering of Metallic Targets by Hypervelocity Long Rods[C]. 15th International Symposium on Ballistics, Jerusalem, Israel, 1995: 59–66.
Google Scholar
[19]
M. Lee, S. Bless. Cavity Dynamics for Long Rod Penetration[C]. Institute for Advanced Technology, The University of Texas at Austin, IAT. R 0094.
Google Scholar
[20]
M. Lee. Cavitation and Mushrooming in Attack of Thick Targets by Deforming Rods[J]. Journal of Applied Mechanics, 2001, 68(3): 420–424.
DOI: 10.1115/1.1360690
Google Scholar
[21]
P. T. Zheng, T. Yang, B. H. Kou, Z. Z. Qin. Shaped charge jet penetrating into concrete target of engineering calculation method [J]. Projectiles, rockets, missiles and guidance journal, 2007, 27 (2): 144-147.
Google Scholar
[22]
H. Wang. Study on [D]. shaped charge penetration concrete effect in Beijing: Beijing Institute of Technology, (1997).
Google Scholar
[23]
T. Szendrei. Analytical Model of Crater Formation by Jet Impact and its Application to Calculation of Penetration Curves and Hold Profiles[C]. 7th nternational Symposium of Ballistics, The Hague, The Netherlands, 1983: 575-583.
Google Scholar
[24]
M. Held Verification of the Equation for Radial Crater Growth by Shaped Charge Jet Penetration[J]. International Journal of Impact Engineering, 1995, 17(1-3): 387-398.
DOI: 10.1016/0734-743x(95)99864-n
Google Scholar
[25]
M. Held, N. S. Huang, D. Jiang, C. C. Chang. Determination of the Crater Radius as a Function of Time of a Shaped Charge Jet that Penetrates Water[J]. Propellants, Explosives, Pyrotechnics, 1996, 21(2): 64-69.
DOI: 10.1002/prep.19960210203
Google Scholar
[26]
M. Held, A. A. Kozhushko. Radial Crater Growing Process in Different Materials with Shaped Charge Jets[J]. Propellants, Explosives, Pyrotechnics, 1999, 24(6): 339-342.
DOI: 10.1002/(sici)1521-4087(199912)24:6<339::aid-prep339>3.0.co;2-5
Google Scholar
[27]
J. Wang, C. Wang, J. G. Ning. Theoretical model and pore shaped jet penetration calculation of engineering mechanics, [J]. 2009, 26 (4): 21-26.
Google Scholar
[28]
Y. L. Kang, J. W. Jiang, S. Y. Wang etc. Different liner materials shaped charge penetration into multi-layer medium experiment and numerical simulation. Chinese Journal of high pressure physics, 2012, 26 (5) Southern China: 487-493.
Google Scholar
[29]
X. Y. Xue, T. Jing, G. D Li. Shaped charge of titanium alloy liner of [J]. missiles and guidance journal, 2012, 32 (5): 83-86.
Google Scholar
[30]
X. W Zhang, Z. P Duan, Q. M. Zhang. Titanium alloy powder shaped charge liner installed jet formation and penetration [J]. Beijing University of technology, 2014, 34 (12): 1229-1233.
Google Scholar
[31]
M. Meyers. The material dynamic behavior of [M]. Translated byQ. M. Zhang, Y. Liu, F. L. Huang, ZH. J. Lv. Beijing: National Defense Industry Press, (2006).
Google Scholar
[32]
Q. Q. Xiao, Z. X. Huang, X. H. Gu. Shaped charge of drug penetration into concrete radial expansion project [J]. Acta ARMAMENTARII, 2010, 31 (4): 464-468.
Google Scholar
[33]
Q. Q. Xiao, Z. X. Huang, X. D. Zu, C. S. Zhu. Penetration Research of Jacketed Jet into Concrete[J]. International Journal of Impact Engineering, 2013, 54: 246-253.
DOI: 10.1016/j.ijimpeng.2012.10.003
Google Scholar