A Review of Rafting in Nickel-Based Single Crystal Superalloys

Article Preview

Abstract:

Nickel-based single crystal superalloys have been widely used in modern aircraft, which is related to its high temperature mechanical strength and creep properties. And the initial cubic γ′ precipitates start to coarsen directionally during high temperature creep, which results in the degradation of the mechanical properties, especially the creep properties. Therefore, it is essential to figure out the mechanism of directional coarsening during the period of high temperature creep. In this article, a broad review of rafting mechanism of nickel-based single crystal superalloys is provided. The major work of this critical review is to introduce several experiments and numerical simulations which are used to analyze the evolution of rafting. For three different numerical simulations, their performance, advantage and disadvantage are discussed in detail. Through methods above, the effect on creep properties is summarized.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 263)

Pages:

41-49

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Matan N, Cox D C, Rae C M F, et al, On the kinetics of rafting in CMSX-4 superalloy single crystals, J. Acta Materialia. 47(7) (1999) 2031-(2045).

DOI: 10.1016/s1359-6454(99)00093-2

Google Scholar

[2] Henderson P, Berglin L, Jansson C, On rafting in a single crystal nickel-base superalloy after high and low temperature creep, J. Scripta materialia. 40(2) (1998) 229-234.

DOI: 10.1016/s1359-6462(98)00348-0

Google Scholar

[3] Tien J K, Copley S M, The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals, J. Metallurgical transactions. 2(1) (1971) 215-219.

DOI: 10.1007/bf02662660

Google Scholar

[4] Nabarro F R N, Rafting in superalloys, J. Metallurgical and Materials transactions A. 27(3) (1996) 513-530.

DOI: 10.1007/bf02648942

Google Scholar

[5] Nabarro F R N, Cress C M, Kotschy P, The thermodynamic driving force for rafting in superalloys, J. Acta materialia. 44(8) (1996) 3189-3198.

DOI: 10.1016/1359-6454(95)00423-8

Google Scholar

[6] Pollock T M, Argon A S, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, J. Acta metallurgica et materialia. 42(6) (1994) 1859-1874.

DOI: 10.1016/0956-7151(94)90011-6

Google Scholar

[7] Murakumo T, Kobayashi T, Koizumi Y, et al, Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction, J. Acta Materialia. 52(12) (2004) 3737-3744.

DOI: 10.1016/j.actamat.2004.04.028

Google Scholar

[8] Okazaki M, Sakaguchi M, Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy, J. International Journal of Fatigue. 30(2) (2008) 318-323.

DOI: 10.1016/j.ijfatigue.2007.01.044

Google Scholar

[9] Meissonnier F T, Busso E P, O'Dowd N P, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, J. International Journal of Plasticity. 17(4) (2001) 601-640.

DOI: 10.1016/s0749-6419(00)00064-4

Google Scholar

[10] Mukherji D, Rösier J, Effect of the γ' volume fraction on the creep strength of Ni-base superalloys: Dedicated to Professor Dr. Otmar Vöhrunger on the occasion of his 65th birthday, J. Zeitschrift für Metallkunde. 94(5) (2003) 478-484.

DOI: 10.3139/146.030478

Google Scholar

[11] Kamaraj M, Rafting in single crystal nickel-base superalloys—an overview, J. Sadhana. 28(1-2) (2003) 115-128.

DOI: 10.1007/bf02717129

Google Scholar

[12] Sugui T, Minggang W, Huichen Y, et al, Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys, J. Materials Science and Engineering: A. 527(16) (2010) 4458-4465.

DOI: 10.1016/j.msea.2010.03.107

Google Scholar

[13] Socrate S, Parks D M, Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys, J. Acta Metallurgica et Materialia. 41(7) (1993) 2185-2209.

DOI: 10.1016/0956-7151(93)90389-a

Google Scholar

[14] Ignat M, Buffiere J Y, Chaix J M, Microstructures induced by a stress gradient in a nickel-based superalloy, J. Acta metallurgica et materialia. 41(3) (1993) 855-862.

DOI: 10.1016/0956-7151(93)90019-o

Google Scholar

[15] Royer A, Bastie P, Veron M, In situ determination of γ' phase volume fraction and of relations between lattice parameters and precipitate morphology in Ni-based single crystal superalloy, J. Acta Materialia. 46(15) (1998) 5357-5368.

DOI: 10.1016/s1359-6454(98)00206-7

Google Scholar

[16] Arrell D J, Vallés J L, Interfacial dislocation based criterion for the prediction of rafting behavior in superalloys, J. Scripta metallurgica et materialia. 30(2) (1994) 149-153.

DOI: 10.1016/0956-716x(94)90030-2

Google Scholar

[17] Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.

DOI: 10.1016/0956-7151(94)00432-h

Google Scholar

[18] Ratel N, Bruno G, Bastie P, et al, Plastic strain-induced rafting of γ' precipitates in Ni superalloys: Elasticity analysis, J. Acta materialia. 54(19) (2006) 5087-5093.

DOI: 10.1016/j.actamat.2006.06.041

Google Scholar

[19] Ichitsubo T, Koumoto D, Hirao M, et al, Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic–plastic phenomena?, J. Acta materialia. 51(14) (2003) 4033-4044.

DOI: 10.1016/s1359-6454(03)00224-6

Google Scholar

[20] Khachaturyan A G, Semenovskaya S, Tsakalakos T, Elastic strain energy of inhomogeneous solids, J. Physical Review B. 52(22) (1995) 15909.

DOI: 10.1103/physrevb.52.15909

Google Scholar

[21] O. Paris, M. Fahrmann, E. Fahrmann, T. M. Pollock and P. Fratzl, Early stages of precipitate rafting in a single crystal Ni, Al, Mo model alloy investigated by small-angle X-ray scattering and TEM, J. Acta Materialia. 45(3) (1997) 1085-1097.

DOI: 10.1016/s1359-6454(96)00223-6

Google Scholar

[22] A.G. Khachaturyan, Theory of Structural Transformation in Solids, Wiley, New York, (1983).

Google Scholar

[23] Chen L Q, Khachaturyan A G, Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind, J. Scripta Metallurgica Et Materialia. 25(1) (1991) 61-66.

DOI: 10.1016/0956-716x(91)90354-4

Google Scholar

[24] Vaithyanathan V, Chen L Q, Coarsening of ordered intermetallic precipitates with coherency stress, J. Acta Materialia. 50(16) (2002) 4061-4073.

DOI: 10.1016/s1359-6454(02)00204-5

Google Scholar

[25] Zhou N, Shen C, Mills M J, et al, Contributions from elastic inhomogeneity and from plasticity to γ' rafting in single-crystal Ni–Al, J. Acta Materialia. 56(20) (2008) 6156-6173.

DOI: 10.1016/j.actamat.2008.08.027

Google Scholar

[26] Zhou N, Shen C, Sarosi P M, et al, rafting in single crystal blade alloys: a simulation study, J. Materials Science and Technology. 25(2) (2009) 205-212.

DOI: 10.1179/174328408x361472

Google Scholar

[27] Cottura M, Bouar Y L, Finel A, et al, A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys, J. Journal of the Mechanics & Physics of Solids. 60(7) (2012) 1243-1256.

DOI: 10.1016/j.jmps.2012.04.003

Google Scholar

[28] Zhou N, Shen C, Mills M J, et al, Phase field modeling of channel dislocation activity and γ' rafting in single crystal Ni–Al, J. Acta Materialia. 55(16) (2007) 5369-5381.

DOI: 10.1016/j.actamat.2007.06.002

Google Scholar

[29] Gaubert A, Le Bouar Y, Finel A, Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, J. Philosophical Magazine. 90(1-4) (2010) 375-404.

DOI: 10.1080/14786430902877802

Google Scholar

[30] Boussinot G, Bouar Y L, Finel A, Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, J. Acta Materialia. 58(12) (2010) 4170-4181.

DOI: 10.1016/j.actamat.2010.04.008

Google Scholar

[31] Gururajan M P, Abinandanan T A, Phase field study of precipitate rafting under a uniaxial stress, J. Acta Materialia. 55(15) (2007) 5015-5026.

DOI: 10.1016/j.actamat.2007.05.021

Google Scholar

[32] Boisse J, Lecoq N, Patte R, et al, Phase-field simulation of coarsening of γ precipitates in an ordered γ' matrix, J. Acta Materialia. 55(18) (2007) 6151-6158.

DOI: 10.1016/j.actamat.2007.07.014

Google Scholar

[33] Li Y S, Li S X, Zhang T Y, Effect of dislocations on spinodal decomposition in Fe–Cr alloys, J. Journal of nuclear materials. 395(1) (2009) 120-130.

DOI: 10.1016/j.jnucmat.2009.10.042

Google Scholar

[34] Carroll L J, Feng Q, Pollock T M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys, J. Metallurgical and Materials Transactions A. 39(6) (2008) 1290-1307.

DOI: 10.1007/s11661-008-9520-7

Google Scholar

[35] Tian S, Zhou H, Zhang J, et al, Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy, J. Materials Science & Engineering A. 279(1–2) (2000) 160-165.

DOI: 10.1016/s0921-5093(99)00623-1

Google Scholar

[36] Wu W P, Guo Y F, Wang Y S, et al, Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ' phase interfaces in Ni-based superalloys, J. Philosophical Magazine. 91(3) (2011) 357-372.

DOI: 10.1080/14786435.2010.521527

Google Scholar

[37] Yashiro K, Naito M, Tomita Y, Molecular dynamics simulation of dislocation nucleation and motion at γ/γ' interface in Ni-based superalloy, J. International journal of mechanical sciences. 44(9) (2002) 1845-1860.

DOI: 10.1016/s0020-7403(02)00138-8

Google Scholar

[38] Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.

DOI: 10.1016/j.ijplas.2005.05.004

Google Scholar

[39] Probst-Hein M, Dlouhy A, Eggeler G, Interface dislocations in superalloy single crystals, J. Acta Materialia. 47(8) (1999) 2497-2510.

DOI: 10.1016/s1359-6454(99)00092-0

Google Scholar

[40] Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.

DOI: 10.1016/0956-7151(94)00432-h

Google Scholar

[41] J. Preußner, Y. Rudnik, H. Brehm, et al, A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals, J. International Journal of Plasticity. 25(5) (2009) 973-994.

DOI: 10.1016/j.ijplas.2008.04.006

Google Scholar

[42] Zhu T, Wang C, Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations, J. Physical Review B. 72(1) (2005) 014111.

Google Scholar

[43] Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.

DOI: 10.1016/j.ijplas.2005.05.004

Google Scholar

[44] Zhang Y, Wanderka N, Schumacher G, et al, Phase chemistry of the superalloy SC16 after creep deformation, J. Acta materialia. 48(11) (2000) 2787-2793.

DOI: 10.1016/s1359-6454(00)00099-9

Google Scholar

[45] Zhou L, Li S X, Chen C R, et al, Finite Element Analysis of γ' Directional Coarsening in Ni-Based Superalloys, J. Zeitschrift für Metallkunde. 93(4) (2002) 315-321.

DOI: 10.3139/146.020315

Google Scholar

[46] Chen C R, Li S X, Zhang Q, Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia, J. Materials Science & Engineering A. 272(2) (1999) 398-409.

DOI: 10.1016/s0921-5093(99)00507-9

Google Scholar

[47] Chen C R, Li S X, Distribution of stresses and elastic strain energy in an ideal multicrystal model, J. Materials Science & Engineering A. 257(2) (1998) 312-321.

DOI: 10.1016/s0921-5093(98)00854-5

Google Scholar