A Review of Rafting in Nickel-Based Single Crystal Superalloys

Abstract:

Article Preview

Nickel-based single crystal superalloys have been widely used in modern aircraft, which is related to its high temperature mechanical strength and creep properties. And the initial cubic γ′ precipitates start to coarsen directionally during high temperature creep, which results in the degradation of the mechanical properties, especially the creep properties. Therefore, it is essential to figure out the mechanism of directional coarsening during the period of high temperature creep. In this article, a broad review of rafting mechanism of nickel-based single crystal superalloys is provided. The major work of this critical review is to introduce several experiments and numerical simulations which are used to analyze the evolution of rafting. For three different numerical simulations, their performance, advantage and disadvantage are discussed in detail. Through methods above, the effect on creep properties is summarized.

Info:

Periodical:

Solid State Phenomena (Volume 263)

Edited by:

Prof. Haider F. Abdul Amir

Pages:

41-49

Citation:

Z. Y. Yu et al., "A Review of Rafting in Nickel-Based Single Crystal Superalloys", Solid State Phenomena, Vol. 263, pp. 41-49, 2017

Online since:

September 2017

Export:

Price:

$38.00

* - Corresponding Author

[1] Matan N, Cox D C, Rae C M F, et al, On the kinetics of rafting in CMSX-4 superalloy single crystals, J. Acta Materialia. 47(7) (1999) 2031-(2045).

DOI: https://doi.org/10.1016/s1359-6454(99)00093-2

[2] Henderson P, Berglin L, Jansson C, On rafting in a single crystal nickel-base superalloy after high and low temperature creep, J. Scripta materialia. 40(2) (1998) 229-234.

DOI: https://doi.org/10.1016/s1359-6462(98)00348-0

[3] Tien J K, Copley S M, The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals, J. Metallurgical transactions. 2(1) (1971) 215-219.

DOI: https://doi.org/10.1007/bf02662660

[4] Nabarro F R N, Rafting in superalloys, J. Metallurgical and Materials transactions A. 27(3) (1996) 513-530.

[5] Nabarro F R N, Cress C M, Kotschy P, The thermodynamic driving force for rafting in superalloys, J. Acta materialia. 44(8) (1996) 3189-3198.

DOI: https://doi.org/10.1016/1359-6454(95)00423-8

[6] Pollock T M, Argon A S, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, J. Acta metallurgica et materialia. 42(6) (1994) 1859-1874.

DOI: https://doi.org/10.1016/0956-7151(94)90011-6

[7] Murakumo T, Kobayashi T, Koizumi Y, et al, Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction, J. Acta Materialia. 52(12) (2004) 3737-3744.

DOI: https://doi.org/10.1016/j.actamat.2004.04.028

[8] Okazaki M, Sakaguchi M, Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy, J. International Journal of Fatigue. 30(2) (2008) 318-323.

DOI: https://doi.org/10.1016/j.ijfatigue.2007.01.044

[9] Meissonnier F T, Busso E P, O'Dowd N P, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, J. International Journal of Plasticity. 17(4) (2001) 601-640.

DOI: https://doi.org/10.1016/s0749-6419(00)00064-4

[10] Mukherji D, Rösier J, Effect of the γ' volume fraction on the creep strength of Ni-base superalloys: Dedicated to Professor Dr. Otmar Vöhrunger on the occasion of his 65th birthday, J. Zeitschrift für Metallkunde. 94(5) (2003) 478-484.

DOI: https://doi.org/10.3139/146.030478

[11] Kamaraj M, Rafting in single crystal nickel-base superalloys—an overview, J. Sadhana. 28(1-2) (2003) 115-128.

DOI: https://doi.org/10.1007/bf02717129

[12] Sugui T, Minggang W, Huichen Y, et al, Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys, J. Materials Science and Engineering: A. 527(16) (2010) 4458-4465.

DOI: https://doi.org/10.1016/j.msea.2010.03.107

[13] Socrate S, Parks D M, Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys, J. Acta Metallurgica et Materialia. 41(7) (1993) 2185-2209.

DOI: https://doi.org/10.1016/0956-7151(93)90389-a

[14] Ignat M, Buffiere J Y, Chaix J M, Microstructures induced by a stress gradient in a nickel-based superalloy, J. Acta metallurgica et materialia. 41(3) (1993) 855-862.

DOI: https://doi.org/10.1016/0956-7151(93)90019-o

[15] Royer A, Bastie P, Veron M, In situ determination of γ' phase volume fraction and of relations between lattice parameters and precipitate morphology in Ni-based single crystal superalloy, J. Acta Materialia. 46(15) (1998) 5357-5368.

DOI: https://doi.org/10.1016/s1359-6454(98)00206-7

[16] Arrell D J, Vallés J L, Interfacial dislocation based criterion for the prediction of rafting behavior in superalloys, J. Scripta metallurgica et materialia. 30(2) (1994) 149-153.

DOI: https://doi.org/10.1016/0956-716x(94)90030-2

[17] Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.

DOI: https://doi.org/10.1016/0956-7151(94)00432-h

[18] Ratel N, Bruno G, Bastie P, et al, Plastic strain-induced rafting of γ' precipitates in Ni superalloys: Elasticity analysis, J. Acta materialia. 54(19) (2006) 5087-5093.

DOI: https://doi.org/10.1016/j.actamat.2006.06.041

[19] Ichitsubo T, Koumoto D, Hirao M, et al, Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic–plastic phenomena?, J. Acta materialia. 51(14) (2003) 4033-4044.

DOI: https://doi.org/10.1016/s1359-6454(03)00224-6

[20] Khachaturyan A G, Semenovskaya S, Tsakalakos T, Elastic strain energy of inhomogeneous solids, J. Physical Review B. 52(22) (1995) 15909.

DOI: https://doi.org/10.1103/physrevb.52.15909

[21] O. Paris, M. Fahrmann, E. Fahrmann, T. M. Pollock and P. Fratzl, Early stages of precipitate rafting in a single crystal Ni, Al, Mo model alloy investigated by small-angle X-ray scattering and TEM, J. Acta Materialia. 45(3) (1997) 1085-1097.

DOI: https://doi.org/10.1016/s1359-6454(96)00223-6

[22] A.G. Khachaturyan, Theory of Structural Transformation in Solids, Wiley, New York, (1983).

[23] Chen L Q, Khachaturyan A G, Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind, J. Scripta Metallurgica Et Materialia. 25(1) (1991) 61-66.

DOI: https://doi.org/10.1016/0956-716x(91)90354-4

[24] Vaithyanathan V, Chen L Q, Coarsening of ordered intermetallic precipitates with coherency stress, J. Acta Materialia. 50(16) (2002) 4061-4073.

DOI: https://doi.org/10.1016/s1359-6454(02)00204-5

[25] Zhou N, Shen C, Mills M J, et al, Contributions from elastic inhomogeneity and from plasticity to γ' rafting in single-crystal Ni–Al, J. Acta Materialia. 56(20) (2008) 6156-6173.

DOI: https://doi.org/10.1016/j.actamat.2008.08.027

[26] Zhou N, Shen C, Sarosi P M, et al, rafting in single crystal blade alloys: a simulation study, J. Materials Science and Technology. 25(2) (2009) 205-212.

[27] Cottura M, Bouar Y L, Finel A, et al, A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys, J. Journal of the Mechanics & Physics of Solids. 60(7) (2012) 1243-1256.

DOI: https://doi.org/10.1016/j.jmps.2012.04.003

[28] Zhou N, Shen C, Mills M J, et al, Phase field modeling of channel dislocation activity and γ' rafting in single crystal Ni–Al, J. Acta Materialia. 55(16) (2007) 5369-5381.

DOI: https://doi.org/10.1016/j.actamat.2007.06.002

[29] Gaubert A, Le Bouar Y, Finel A, Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, J. Philosophical Magazine. 90(1-4) (2010) 375-404.

DOI: https://doi.org/10.1080/14786430902877802

[30] Boussinot G, Bouar Y L, Finel A, Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, J. Acta Materialia. 58(12) (2010) 4170-4181.

DOI: https://doi.org/10.1016/j.actamat.2010.04.008

[31] Gururajan M P, Abinandanan T A, Phase field study of precipitate rafting under a uniaxial stress, J. Acta Materialia. 55(15) (2007) 5015-5026.

DOI: https://doi.org/10.1016/j.actamat.2007.05.021

[32] Boisse J, Lecoq N, Patte R, et al, Phase-field simulation of coarsening of γ precipitates in an ordered γ' matrix, J. Acta Materialia. 55(18) (2007) 6151-6158.

DOI: https://doi.org/10.1016/j.actamat.2007.07.014

[33] Li Y S, Li S X, Zhang T Y, Effect of dislocations on spinodal decomposition in Fe–Cr alloys, J. Journal of nuclear materials. 395(1) (2009) 120-130.

DOI: https://doi.org/10.1016/j.jnucmat.2009.10.042

[34] Carroll L J, Feng Q, Pollock T M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys, J. Metallurgical and Materials Transactions A. 39(6) (2008) 1290-1307.

DOI: https://doi.org/10.1007/s11661-008-9520-7

[35] Tian S, Zhou H, Zhang J, et al, Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy, J. Materials Science & Engineering A. 279(1–2) (2000) 160-165.

DOI: https://doi.org/10.1016/s0921-5093(99)00623-1

[36] Wu W P, Guo Y F, Wang Y S, et al, Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ' phase interfaces in Ni-based superalloys, J. Philosophical Magazine. 91(3) (2011) 357-372.

DOI: https://doi.org/10.1080/14786435.2010.521527

[37] Yashiro K, Naito M, Tomita Y, Molecular dynamics simulation of dislocation nucleation and motion at γ/γ' interface in Ni-based superalloy, J. International journal of mechanical sciences. 44(9) (2002) 1845-1860.

DOI: https://doi.org/10.1016/s0020-7403(02)00138-8

[38] Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.

DOI: https://doi.org/10.1016/j.ijplas.2005.05.004

[39] Probst-Hein M, Dlouhy A, Eggeler G, Interface dislocations in superalloy single crystals, J. Acta Materialia. 47(8) (1999) 2497-2510.

DOI: https://doi.org/10.1016/s1359-6454(99)00092-0

[40] Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.

DOI: https://doi.org/10.1016/0956-7151(94)00432-h

[41] J. Preußner, Y. Rudnik, H. Brehm, et al, A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals, J. International Journal of Plasticity. 25(5) (2009) 973-994.

DOI: https://doi.org/10.1016/j.ijplas.2008.04.006

[42] Zhu T, Wang C, Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations, J. Physical Review B. 72(1) (2005) 014111.

DOI: https://doi.org/10.1103/physrevb.72.014111

[43] Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.

DOI: https://doi.org/10.1016/j.ijplas.2005.05.004

[44] Zhang Y, Wanderka N, Schumacher G, et al, Phase chemistry of the superalloy SC16 after creep deformation, J. Acta materialia. 48(11) (2000) 2787-2793.

DOI: https://doi.org/10.1016/s1359-6454(00)00099-9

[45] Zhou L, Li S X, Chen C R, et al, Finite Element Analysis of γ' Directional Coarsening in Ni-Based Superalloys, J. Zeitschrift für Metallkunde. 93(4) (2002) 315-321.

DOI: https://doi.org/10.3139/146.020315

[46] Chen C R, Li S X, Zhang Q, Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia, J. Materials Science & Engineering A. 272(2) (1999) 398-409.

DOI: https://doi.org/10.1016/s0921-5093(99)00507-9

[47] Chen C R, Li S X, Distribution of stresses and elastic strain energy in an ideal multicrystal model, J. Materials Science & Engineering A. 257(2) (1998) 312-321.

DOI: https://doi.org/10.1016/s0921-5093(98)00854-5