[1]
Matan N, Cox D C, Rae C M F, et al, On the kinetics of rafting in CMSX-4 superalloy single crystals, J. Acta Materialia. 47(7) (1999) 2031-(2045).
DOI: 10.1016/s1359-6454(99)00093-2
Google Scholar
[2]
Henderson P, Berglin L, Jansson C, On rafting in a single crystal nickel-base superalloy after high and low temperature creep, J. Scripta materialia. 40(2) (1998) 229-234.
DOI: 10.1016/s1359-6462(98)00348-0
Google Scholar
[3]
Tien J K, Copley S M, The effect of uniaxial stress on the periodic morphology of coherent gamma prime precipitates in nickel-base superalloy crystals, J. Metallurgical transactions. 2(1) (1971) 215-219.
DOI: 10.1007/bf02662660
Google Scholar
[4]
Nabarro F R N, Rafting in superalloys, J. Metallurgical and Materials transactions A. 27(3) (1996) 513-530.
DOI: 10.1007/bf02648942
Google Scholar
[5]
Nabarro F R N, Cress C M, Kotschy P, The thermodynamic driving force for rafting in superalloys, J. Acta materialia. 44(8) (1996) 3189-3198.
DOI: 10.1016/1359-6454(95)00423-8
Google Scholar
[6]
Pollock T M, Argon A S, Directional coarsening in nickel-base single crystals with high volume fractions of coherent precipitates, J. Acta metallurgica et materialia. 42(6) (1994) 1859-1874.
DOI: 10.1016/0956-7151(94)90011-6
Google Scholar
[7]
Murakumo T, Kobayashi T, Koizumi Y, et al, Creep behaviour of Ni-base single-crystal superalloys with various γ' volume fraction, J. Acta Materialia. 52(12) (2004) 3737-3744.
DOI: 10.1016/j.actamat.2004.04.028
Google Scholar
[8]
Okazaki M, Sakaguchi M, Thermo-mechanical fatigue failure of a single crystal Ni-based superalloy, J. International Journal of Fatigue. 30(2) (2008) 318-323.
DOI: 10.1016/j.ijfatigue.2007.01.044
Google Scholar
[9]
Meissonnier F T, Busso E P, O'Dowd N P, Finite element implementation of a generalised non-local rate-dependent crystallographic formulation for finite strains, J. International Journal of Plasticity. 17(4) (2001) 601-640.
DOI: 10.1016/s0749-6419(00)00064-4
Google Scholar
[10]
Mukherji D, Rösier J, Effect of the γ' volume fraction on the creep strength of Ni-base superalloys: Dedicated to Professor Dr. Otmar Vöhrunger on the occasion of his 65th birthday, J. Zeitschrift für Metallkunde. 94(5) (2003) 478-484.
DOI: 10.3139/146.030478
Google Scholar
[11]
Kamaraj M, Rafting in single crystal nickel-base superalloys—an overview, J. Sadhana. 28(1-2) (2003) 115-128.
DOI: 10.1007/bf02717129
Google Scholar
[12]
Sugui T, Minggang W, Huichen Y, et al, Influence of element Re on lattice misfits and stress rupture properties of single crystal nickel-based superalloys, J. Materials Science and Engineering: A. 527(16) (2010) 4458-4465.
DOI: 10.1016/j.msea.2010.03.107
Google Scholar
[13]
Socrate S, Parks D M, Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys, J. Acta Metallurgica et Materialia. 41(7) (1993) 2185-2209.
DOI: 10.1016/0956-7151(93)90389-a
Google Scholar
[14]
Ignat M, Buffiere J Y, Chaix J M, Microstructures induced by a stress gradient in a nickel-based superalloy, J. Acta metallurgica et materialia. 41(3) (1993) 855-862.
DOI: 10.1016/0956-7151(93)90019-o
Google Scholar
[15]
Royer A, Bastie P, Veron M, In situ determination of γ' phase volume fraction and of relations between lattice parameters and precipitate morphology in Ni-based single crystal superalloy, J. Acta Materialia. 46(15) (1998) 5357-5368.
DOI: 10.1016/s1359-6454(98)00206-7
Google Scholar
[16]
Arrell D J, Vallés J L, Interfacial dislocation based criterion for the prediction of rafting behavior in superalloys, J. Scripta metallurgica et materialia. 30(2) (1994) 149-153.
DOI: 10.1016/0956-716x(94)90030-2
Google Scholar
[17]
Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.
DOI: 10.1016/0956-7151(94)00432-h
Google Scholar
[18]
Ratel N, Bruno G, Bastie P, et al, Plastic strain-induced rafting of γ' precipitates in Ni superalloys: Elasticity analysis, J. Acta materialia. 54(19) (2006) 5087-5093.
DOI: 10.1016/j.actamat.2006.06.041
Google Scholar
[19]
Ichitsubo T, Koumoto D, Hirao M, et al, Rafting mechanism for Ni-base superalloy under external stress: elastic or elastic–plastic phenomena?, J. Acta materialia. 51(14) (2003) 4033-4044.
DOI: 10.1016/s1359-6454(03)00224-6
Google Scholar
[20]
Khachaturyan A G, Semenovskaya S, Tsakalakos T, Elastic strain energy of inhomogeneous solids, J. Physical Review B. 52(22) (1995) 15909.
DOI: 10.1103/physrevb.52.15909
Google Scholar
[21]
O. Paris, M. Fahrmann, E. Fahrmann, T. M. Pollock and P. Fratzl, Early stages of precipitate rafting in a single crystal Ni, Al, Mo model alloy investigated by small-angle X-ray scattering and TEM, J. Acta Materialia. 45(3) (1997) 1085-1097.
DOI: 10.1016/s1359-6454(96)00223-6
Google Scholar
[22]
A.G. Khachaturyan, Theory of Structural Transformation in Solids, Wiley, New York, (1983).
Google Scholar
[23]
Chen L Q, Khachaturyan A G, Computer simulation of decomposition reactions accompanied by a congruent ordering of the second kind, J. Scripta Metallurgica Et Materialia. 25(1) (1991) 61-66.
DOI: 10.1016/0956-716x(91)90354-4
Google Scholar
[24]
Vaithyanathan V, Chen L Q, Coarsening of ordered intermetallic precipitates with coherency stress, J. Acta Materialia. 50(16) (2002) 4061-4073.
DOI: 10.1016/s1359-6454(02)00204-5
Google Scholar
[25]
Zhou N, Shen C, Mills M J, et al, Contributions from elastic inhomogeneity and from plasticity to γ' rafting in single-crystal Ni–Al, J. Acta Materialia. 56(20) (2008) 6156-6173.
DOI: 10.1016/j.actamat.2008.08.027
Google Scholar
[26]
Zhou N, Shen C, Sarosi P M, et al, rafting in single crystal blade alloys: a simulation study, J. Materials Science and Technology. 25(2) (2009) 205-212.
DOI: 10.1179/174328408x361472
Google Scholar
[27]
Cottura M, Bouar Y L, Finel A, et al, A phase field model incorporating strain gradient viscoplasticity: Application to rafting in Ni-base superalloys, J. Journal of the Mechanics & Physics of Solids. 60(7) (2012) 1243-1256.
DOI: 10.1016/j.jmps.2012.04.003
Google Scholar
[28]
Zhou N, Shen C, Mills M J, et al, Phase field modeling of channel dislocation activity and γ' rafting in single crystal Ni–Al, J. Acta Materialia. 55(16) (2007) 5369-5381.
DOI: 10.1016/j.actamat.2007.06.002
Google Scholar
[29]
Gaubert A, Le Bouar Y, Finel A, Coupling phase field and viscoplasticity to study rafting in Ni-based superalloys, J. Philosophical Magazine. 90(1-4) (2010) 375-404.
DOI: 10.1080/14786430902877802
Google Scholar
[30]
Boussinot G, Bouar Y L, Finel A, Phase-field simulations with inhomogeneous elasticity: Comparison with an atomic-scale method and application to superalloys, J. Acta Materialia. 58(12) (2010) 4170-4181.
DOI: 10.1016/j.actamat.2010.04.008
Google Scholar
[31]
Gururajan M P, Abinandanan T A, Phase field study of precipitate rafting under a uniaxial stress, J. Acta Materialia. 55(15) (2007) 5015-5026.
DOI: 10.1016/j.actamat.2007.05.021
Google Scholar
[32]
Boisse J, Lecoq N, Patte R, et al, Phase-field simulation of coarsening of γ precipitates in an ordered γ' matrix, J. Acta Materialia. 55(18) (2007) 6151-6158.
DOI: 10.1016/j.actamat.2007.07.014
Google Scholar
[33]
Li Y S, Li S X, Zhang T Y, Effect of dislocations on spinodal decomposition in Fe–Cr alloys, J. Journal of nuclear materials. 395(1) (2009) 120-130.
DOI: 10.1016/j.jnucmat.2009.10.042
Google Scholar
[34]
Carroll L J, Feng Q, Pollock T M. Interfacial dislocation networks and creep in directional coarsened Ru-containing nickel-base single-crystal superalloys, J. Metallurgical and Materials Transactions A. 39(6) (2008) 1290-1307.
DOI: 10.1007/s11661-008-9520-7
Google Scholar
[35]
Tian S, Zhou H, Zhang J, et al, Formation and role of dislocation networks during high temperature creep of a single crystal nickel–base superalloy, J. Materials Science & Engineering A. 279(1–2) (2000) 160-165.
DOI: 10.1016/s0921-5093(99)00623-1
Google Scholar
[36]
Wu W P, Guo Y F, Wang Y S, et al, Molecular dynamics simulation of the structural evolution of misfit dislocation networks at γ/γ' phase interfaces in Ni-based superalloys, J. Philosophical Magazine. 91(3) (2011) 357-372.
DOI: 10.1080/14786435.2010.521527
Google Scholar
[37]
Yashiro K, Naito M, Tomita Y, Molecular dynamics simulation of dislocation nucleation and motion at γ/γ' interface in Ni-based superalloy, J. International journal of mechanical sciences. 44(9) (2002) 1845-1860.
DOI: 10.1016/s0020-7403(02)00138-8
Google Scholar
[38]
Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.
DOI: 10.1016/j.ijplas.2005.05.004
Google Scholar
[39]
Probst-Hein M, Dlouhy A, Eggeler G, Interface dislocations in superalloy single crystals, J. Acta Materialia. 47(8) (1999) 2497-2510.
DOI: 10.1016/s1359-6454(99)00092-0
Google Scholar
[40]
Buffiere J Y, Ignat M, A dislocation based criterion for the raft formation in nickel-based superalloys single crystals, J. Acta metallurgica et materialia. 43(5) (1995) 1791-1797.
DOI: 10.1016/0956-7151(94)00432-h
Google Scholar
[41]
J. Preußner, Y. Rudnik, H. Brehm, et al, A dislocation density based material model to simulate the anisotropic creep behavior of single-phase and two-phase single crystals, J. International Journal of Plasticity. 25(5) (2009) 973-994.
DOI: 10.1016/j.ijplas.2008.04.006
Google Scholar
[42]
Zhu T, Wang C, Misfit dislocation networks in the γ/γ' phase interface of a Ni-based single-crystal superalloy: Molecular dynamics simulations, J. Physical Review B. 72(1) (2005) 014111.
Google Scholar
[43]
Yashiro K, Kurose F, Nakashima Y, et al, Discrete dislocation dynamics simulation of cutting of γ' precipitate and interfacial dislocation network in Ni-based superalloys, J. International Journal of Plasticity. 22(4) (2006) 713-723.
DOI: 10.1016/j.ijplas.2005.05.004
Google Scholar
[44]
Zhang Y, Wanderka N, Schumacher G, et al, Phase chemistry of the superalloy SC16 after creep deformation, J. Acta materialia. 48(11) (2000) 2787-2793.
DOI: 10.1016/s1359-6454(00)00099-9
Google Scholar
[45]
Zhou L, Li S X, Chen C R, et al, Finite Element Analysis of γ' Directional Coarsening in Ni-Based Superalloys, J. Zeitschrift für Metallkunde. 93(4) (2002) 315-321.
DOI: 10.3139/146.020315
Google Scholar
[46]
Chen C R, Li S X, Zhang Q, Finite element analysis of stresses associated with transformations in magnesia partially stabilized zirconia, J. Materials Science & Engineering A. 272(2) (1999) 398-409.
DOI: 10.1016/s0921-5093(99)00507-9
Google Scholar
[47]
Chen C R, Li S X, Distribution of stresses and elastic strain energy in an ideal multicrystal model, J. Materials Science & Engineering A. 257(2) (1998) 312-321.
DOI: 10.1016/s0921-5093(98)00854-5
Google Scholar