[1]
S.S. Naboychenko, L.P. Ni, Y.M. Shneerson, L.V. Chugaev, Autoclave hydrometallurgy of non-ferrous metals, GOU UGTU-UPI, Ekaterinburg, (2002).
Google Scholar
[2]
J.E. Halfyard, K. Hawboldt, Separation of elemental sulfur from hydrometallurgical residue: A review, Hydrometallurgy. 109 (2011) 80-89.
DOI: 10.1016/j.hydromet.2011.05.012
Google Scholar
[3]
Bin Xu, Yongbin Yang, Qian Li, Tao Jiang, Guanghui Li, Stage leaching of a complex polymetallic sulfide concentrate: Focus on the extraction of Ag and Au, Hydrometallurgy. 159 (2016) 87-94.
DOI: 10.1016/j.hydromet.2015.10.008
Google Scholar
[4]
M. Lampinen, A. Laari, I. Turunen, Kinetic model for direct leaching of zinc sulfide concentrates at high slurry and solute concentration, Hydrometallurgy. 153 (2015) 160-169.
DOI: 10.1016/j.hydromet.2015.02.012
Google Scholar
[5]
Xu Bin, Zhong Hong, Jiang Tao, An investigation of oxygen pressure acid leaching of Gacun complex Cu-Pb bulk concentrate, Rare metals. 31 (2012) 96-101.
DOI: 10.1007/s12598-012-0470-2
Google Scholar
[6]
Zhi-feng Xu, Qing-zheng Jiang, Cheng-yan Wang, Atmosperic oxygen-rich direct leaching behavior of zinc sulphide concentrate, Trans. Nonferrous Met. Soc. 23 (2013) 3780-3787.
DOI: 10.1016/s1003-6326(13)62929-5
Google Scholar
[7]
M.N. Naftal', S.S. Naboichenko, Surfactants selection for oxidative autoclave leaching of nickel-pyrrhotite concentrates, Tsvetnye Metally. 6 (2010) 56-62.
Google Scholar
[8]
L. Tong, D.B. Dreisinger, Interfacial properties of liquid sulfur in the pressure leaching of nickel concentrate, Minerals Engineering. 22 (2009) 456-461.
DOI: 10.1016/j.mineng.2008.12.003
Google Scholar
[9]
G. Owusu, D.B. Dreisinger, Interfacial properties determinations in liquid sulfur, aqueous zinc sulfate and zinc sulfide systems, Hydrometallurgy. 43 (1996) 207-218.
DOI: 10.1016/s0304-386x(96)90002-x
Google Scholar
[10]
L. Tong, D. Dreisinger, The adsorption of sulfur dispersing agents on sulfur and nickel sulfide concentrate surfaces, Mineral engineering. 22 (2009) 445-450.
DOI: 10.1016/j.mineng.2008.12.006
Google Scholar
[11]
V.M. Piskunov, V.V. Reznichenko, About lignosulfonate influence on cementation purification, VNIItsvetmet Collection of studies, Ust'-Kamenogorsk, (2006).
Google Scholar
[12]
M.A. Drweesh, Effect of surfactants on the removal of copper from waste water by cementation, Alexandria Engineering Journal. 43 (2004) 917-925.
Google Scholar
[13]
G. Owusu, D.B. Dreisinger, E. Peters, Interfacial effects of surface-active agents under zinc pressure leach conditions, Metallurgical and materials transactions B. 26B (1995) 5-12.
DOI: 10.1007/bf02648972
Google Scholar
[14]
K. Holmberg, B. Jonsson, B. Kronberg, B. Lindman, Surfactants and polymers in aqueous solution, Jon Wiley & Sons Ltd., England, (2003).
Google Scholar
[15]
N.V. Shul'ga, L.A. Gomolko, N.P. Krut'ko, Dependence of composition and characteristics of lignosulfonates on the procedures of their recovery and purification, Russian Journal of Applied Chemistry. 81 (2008) 1245-1251.
DOI: 10.1134/s1070427208070239
Google Scholar
[16]
Zh.H. Zhou, Q. Zhang, H. Zh. Wang, Zh.C. Xu, L. Zhang, D.D. Liu, L. Zhang, Wettability of a PTFE surface by aqueous solutions of zwitterionic surfactants: Effect of molecular structure. 489 (2016) 370-377.
DOI: 10.1016/j.colsurfa.2015.11.004
Google Scholar
[17]
Yu. Ge, D. Li, Z. Li, Effects of lignosulfonate structure on the surface activity and wettability to a hydrophobic powder. 9 (2014) 7119-7127.
Google Scholar
[18]
H. Li, S. Fu, L. Peng, H. Zhan, Surface modification of cellulose fibers with layer-by-layer self-assembly of lignosulfonate and polyelectrolyte: effects on fibers wetting properties and paper strength. 19 (2012) 533-546.
DOI: 10.1007/s10570-011-9639-3
Google Scholar
[19]
D.L. Timrot, S.A. Traktueva, B.A. Alekseeva, Molten sulfur surface tension, Thermophysics of high temperatures. 21 (1988) 884-889.
Google Scholar
[20]
V.V. Sviridov, A.V. Sviridov, A.F. Nikiforov, Physics and chemistry of microflotation, GOU VPO UGTU-UPI, Ekaterinburg, (2006).
Google Scholar