Phenomenological Model of Low-Carbon Steels Hardening during Multistage Drawing

Article Preview

Abstract:

The obtained phenomenological model of hardening G3Si1 and Sb08-G2S low-carbon welding wire during multistage drawing establishes the dependence of the hardening curve coefficients (hardening index and hardening modulus) on the integral tensile strain. The obtained model makes it possible to calculate the hardening curve, strength, and plasticity indicators of metal products based on the results of wire rod testing in the delivery state.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

114-123

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.A. Krokha, Uprochnenie metallov pri holodnoi plasticheskoi deformatsii, Hardening of metals at cold plastic working, Mashinostroenie, Moscow, (1980).

Google Scholar

[2] A.G. Atkins, R.M. Caddel, The incorporation of work hardening and redundant work in rod-drawing analyses, Int. J. Mech. Sci. Pergamon Press. 10 (1968) 15-28.

DOI: 10.1016/0020-7403(68)90039-8

Google Scholar

[3] U.S. Dixit and P.M. Dixit, An analysis of the steady-state wire drawing of strain-hardening materials, Journal of Material Processing Technology. 47 (1995) 201-229.

DOI: 10.1016/0924-0136(95)85000-7

Google Scholar

[4] A.N. Shapoval and A.A. Shapoval, Development of the unit for multi-stage vibration drawing of metal product, Tsvetnye Metally. 4 (2002) 77-82.

Google Scholar

[5] S.M. Gorbatyuk, A.A. Shapoval, D.V. Mospan and V.V. Dragobetskii, Production of periodic bars by vibrational drawing, Steel in Translation. 46(7) (2016) 474-478.

DOI: 10.3103/s096709121607007x

Google Scholar

[6] A.A. Radionov and L.V. Radionova, Energy approach to the influence of countertension on drawing, Steel in Translation. 38(5) (2008) 358-361.

DOI: 10.3103/s0967091208050033

Google Scholar

[7] I.V. Dobrov, Power parameters of the drawing process in a roller die, Russian Journal of Non-Ferrous Metals. 50(3) (2009) 221-227.

DOI: 10.3103/s1067821209030079

Google Scholar

[8] I.V. Dobrov, Modeling the processes of friction during deformation of billet in monolithic die, Izvestiya Vysshikh Uchebnykh Zavedenij. Chernaya Metallurgiya. 3 (2001) 26-29.

Google Scholar

[9] V.V. Kukhar, Producing of elongated forgings with sharpened end by rupture with local heating of the workpiece method, Metallurgical and Mining Industry. 6 (2015) 122-132.

Google Scholar

[10] P. Tiernan and M.T. Hillery, An analysis of wire manufacture using the dieless drawing method, Journal of Manufacturing Processes. 10 (1) (2008) 12-20.

DOI: 10.1016/j.manpro.2008.05.001

Google Scholar

[11] S. Supriadi, T. Furushima, K. Manabe, Real-Time Process Control System of Dieless Tube Drawing with an Image Processing Approach, Materials Transactions. 53(5) (2012) 862-869.

DOI: 10.2320/matertrans.mf201118

Google Scholar

[12] Y.M. Hwang and T.Y. Kuo, Dieless drawing of stainless steel tubes, The International Journal of Advanced Manufacturing Technology. 68(5) (2013) 1311-1316.

DOI: 10.1007/s00170-013-4922-0

Google Scholar

[13] C.S. Cetinarslan and A. Guzey, Tensile properties of cold-drawn low-carbon steel wires under different process parameters, Materiali in tehnologije – Materials and technology. 47(2) (2013) 245-252.

Google Scholar

[14] N.A. Raji and O.O. Oluwole, Influence of degree of cold-drawing on the mechanical properties of low carbon steel, Material Sciences and Applications. 2 (2011) 1556-1563.

DOI: 10.4236/msa.2011.211208

Google Scholar

[15] A. Phelippeau, S. Pommier, T. Tsakalakos, M. Claver and C. Prioul, Cold drawn steel wires – processing, residual stresses and ductility. Part I: metallography and finite element analyses, Fatigue Fract. Eng. Mater Struct. 29 (2006) 243-253.

DOI: 10.1111/j.1460-2695.2005.00981.x

Google Scholar

[16] A. Phelippeau, S. Pommier, I. Zakharchenko, R. Levy-Tubiana, T. Tsakalakos, M. Claver, M. Croft, Z. Zhong and C. Prioul, Cold drawn steel wires – processing, residual stresses and ductility. Part II: Synchrotron and neutron diffraction, Fatigue Fract. Eng. Mater Struct. 29 (2006).

DOI: 10.1111/j.1460-2695.2005.00987.x

Google Scholar

[17] D. Salcedo, C. J. Luis, J. León, R. Luri, I. Puertas and I. Pérez, Analysis of residual stresses in wire drawing processes, 14th International Research/Expert Conference Trends in the Development of Machinery and Associated Technology, TMT 2010, Mediterranean Cruise. (2010).

Google Scholar

[18] J.M. Atienza, J. Ruiz-Hervias, M.L. Martinez-Perez, F.J. Mompean, M. Garcia-Hernandez, and M. Elices, Residual stresses in cold drawn pearlitic rods, Scripta Materialia. 52 (2005) 1223-1228.

DOI: 10.1016/j.scriptamat.2005.03.003

Google Scholar

[19] V. Kukhar, V. Burko, A. Prysiazhnyi, E. Balalayeva and M. Nahnibeda,  Development of alternative technology of dual forming of profiled workpiece obtained by buckling, East-European Journal of Enterprise Technology.  3/7(81) (2016) 53-61.

DOI: 10.15587/1729-4061.2016.72063

Google Scholar

[20] G. Backhaus, Anizotropnoe uprochnenie. Teoriia i sopostavlenie s eksperimentom, Mehanika tverdogo deformiruemogo tela, 6 (1976) 120-129.

Google Scholar

[21] G. Backhaus, Fließspannungen und Fließbedingung bei zyklische Verformungen, ZAMM. 6(8) (1976) 337-348.

DOI: 10.1002/zamm.19760560802

Google Scholar

[22] A.A. Ilyushin, Plastichnost'. Osnovy obshhej matematicheskoj teorii, Academy of Sciences of the USSR, Moscow, (1963).

Google Scholar

[23] T. Kurtyka and M. Zyczkowski, Evolution equations for distortional plastic hardening, International Journal of Plasticity. 12(2) (1996) 191-213.

DOI: 10.1016/s0749-6419(96)00003-4

Google Scholar

[24] D.W.A. Rees, Yield functions that account for the effects of initial and subsequent plastic anisotropy, Acta Mechanica. 43 (3) (1982) 223-241.

DOI: 10.1007/bf01176284

Google Scholar

[25] C. Suchocki and P. Skoczylas, Finite strain formulation of elasto-plasticity without yield surface: theory, parameter identification and applications, Journal of Theoretical and Applied Mechanics. 54(3) (2016) 731-742.

DOI: 10.15632/jtam-pl.54.3.731

Google Scholar

[26] V.P. Radchenko and M.N. Saushkin, A phenomenological method of calculating the residual stresses and plastic deformations in a hollow surface-hardened cylindrical sample, Journal of Applied Mathematics and Mechanics. 77(1) (2013) 102-108.

DOI: 10.1016/j.jappmathmech.2013.04.013

Google Scholar

[27] Z. Jokovic and N. Djapic, Optimization of a cold wire drawing technological process, Journal of Chemical Technology and Metallurgy. 50(5) (2015) 653-660.

Google Scholar

[28] M. Suliga, The Analysis of the Mechanical Properties of High Carbon Steel Wires after Multipass High Speed Drawning Process in Conventional and Hydrodynamic Dies, Archives of Metallurgy and Materials. 59(2) (2014) 681–685.

DOI: 10.2478/amm-2014-0111

Google Scholar

[29] O.V. Grushko, Fenomenologіchnі aspekti stvorennja kart materіalіv dlja procesіv holodnogo plastichnogo deformuvannja, Obrabotka materialov davleniem, 1(34) (2013) 85-95.

Google Scholar

[30] O.V. Grushko, Development of usage of brinell hardness test method for flow stress definition during cold deformation, Metallurgical and Mining Industry. 5(1) (2013) 11-16.

Google Scholar

[31] O. Grushko and Y. Slobodyanyuk, Microstructure of low-carbon steel wire and its welding and fabrication properties, Metallurgical and Mining Industry, 11 (2016) 44-50.

Google Scholar

[32] O.V. Grushko and Y.O. Slobodyanyuk, Osoblyvosti formuvannya pokaznykiv yakosti obmidnenoho zvaryuval'noho malovuhletsevoho drotu, Visnyk NTU «KhPI». Seriya: Innovatsiyni tekhnolohiyi ta obladnannya obrobky materialiv u mashynobuduvanni ta metalurhiyi, 47 (1166) (2015).

Google Scholar

[33] O.V. Grushko, Y.O. Slobodyanyuk, R.S. Tkachenko, Krivyie techeniya katanki marok G3Si1 i Sv-08G2S, Obrabotka materialov davleniem, 1 (42) (2016) 207-213.

Google Scholar

[34] P. Ludwik, Elemente der technologischen Mechanik, J. Springer-Verlag, Berlin, (1909).

Google Scholar

[35] H. Swift, Plastic instability under plane stress, Journal of the Mechanics and Physics of Solids. 1(1) (1952) 1-18.

Google Scholar

[36] E. Voce, A practical strain-hardening function, Metallurgia. 51(307) (1955) 219-226.

Google Scholar