[1]
S.P. Gubin, Y.A. Koksharov, G.B. Chomutov, G.Y. Jurkov, Magnetic nanoparticles: preparation methods, structure and properties, Russian Chemical Reviews, 6 (2005) 539-574.
Google Scholar
[2]
M.I. Baraton, Synthesis, Functionalization, and Surface Treatment of Nanoparticles. Am. Sci. Publ., Los-Angeles, 2002 144-157.
Google Scholar
[3]
Y. A Krutyakov, A. A Kudrinsky, A.Y. Olenin, G.V. Lisichkin, Synthesis and properties of silver nanoparticles: advances and prospects, Russian Chemical Reviews, 3 (2008) 242-269.
DOI: 10.1070/rc2008v077n03abeh003751
Google Scholar
[4]
L. A, Dykman, V.A. Bogatyrev, Gold nanoparticles: preparation, functionalisation and applications in biochemistry and immunochemistry, Russian Chemical Reviews, 2 (2007) 199-213.
DOI: 10.1070/rc2007v076n02abeh003673
Google Scholar
[5]
S. Taketomi, S. Tikadzumi, Magnetic fluid, Moscow, Mir, (1993).
Google Scholar
[6]
S.Z. Kalaeva, Directed change of properties of minerals and rocks technogenic deposits for magshnitnyh liquids, ensuring the solution of engineering problems of extraction and processing of minerals. Abstract dis. PhD. Engineering, Tula State University, (2015).
Google Scholar
[7]
H. Mamiya, I. Nakatani, T. Furubashy, Phase transitions of iron-nitride magnetic fluids, Phys. Rev. Lett., 84 (2000) 6106-6109.
DOI: 10.1103/physrevlett.84.6106
Google Scholar
[8]
K. Erin, The study of the kinetics of birefringence in colloidal systems under the influence of external electric and magnetic fields: PhD. Physics and Mathematics, Stavropol, Stavropol State University, (2001).
Google Scholar
[9]
Y.I. Dikanskii, O.A. Nechayev, Structural changes in the magnetic fluid in the electric and magnetic fields, Colloid Journal, 3 (2003) 338-342.
Google Scholar
[10]
E.A. Bondarenko, Mechanism of the formation of the multilayer structure of the magnetic fluid in the sheath region, PhD. Physics and mathematics Stavropol, Stavropol State University, (2001).
Google Scholar
[11]
B.R. Jennings, M. Xu, P.J. Ridler, Structure in magneto-rheological fluids: a theoretical analysis, Journal of Physics D: Appl. Phys, 34 (2001) 1617-1623.
DOI: 10.1088/0022-3727/34/11/310
Google Scholar
[12]
Y.I. Dikanskii, J.G. Weger, V.N. Suzdalev, Y.L. Smerek, About magnetic fluids with a dispersion of non-magnetic inclusions of various shapes, Proceedings of Universities of North-Kavkaz Region, Rostov-on-Don, Southern Federal University, 1 (2003).
Google Scholar
[13]
N.V. Verolaynen, O.E. Zhuravlev, L.I. Voronchihina, Investigation of citric acid and its salts as stabilizers of magnetic aqueous fluids, VestnikTvSUSeries, 13 (2012) 89-98.
Google Scholar
[14]
E.S. Brikov, D.V. Zhuravsky, V.A. Mikheev, V.F. Novikov, I.A. Smirnov, The effect of steady magnetic fields on the formation of the mean value of magnetite nanoparticles in aqueous ion exchange reaction with an excess of alkali precipitation Chemistry, Physics and Technology of Surface, 3 (2011).
Google Scholar
[15]
E.N. Burkova, Spatial segregation of particles in concentrated magnetic fluids: numerical simulation, PhD. Physics and Mathematics, Perm, Perm State University, (2014).
Google Scholar
[16]
S. Kayal, R.V. Ramanujan, Anti-cancer drug loaded iron–gold core–shell nanoparticles (Fe and Au) for magnetic drug targeting, J. Nanosci, Nanotech, 10 (2010) 1-13.
DOI: 10.1166/jnn.2010.2461
Google Scholar
[17]
M. Faraji, Y. Yamini, M. Rezaee, Magnetic nanoparticles: synthesis, stabilization, functionalization, characterization, and applications, J. Iran, Chem. Soc., 1 (2010) 1-37.
DOI: 10.1002/chin.201050216
Google Scholar
[18]
H. Jaganathan, R.L. Gieseck, A. Ivanisevic, Characterizing proton relaxation times for metallic and magnetic layer-by-layer coated, DNA-templated nanoparticle chains, Nanotechnology, Vol. 21 (2010) 1-7.
DOI: 10.1088/0957-4484/21/24/245103
Google Scholar
[19]
I. Robinson, Le D. Tung, S. Maenosono, C. Walti, N.T. Thanh, Synthesis of core-shell gold coated magnetic nanoparticles and their interaction with thiolated DNA, Nanoscale, 2 (2010) 2624-2630.
DOI: 10.1039/c0nr00621a
Google Scholar
[20]
U. Tamer, Y. Gündoğdu, I. HakkBoyac, K. Pekmez, Synthesis of magnetic core–shell Fe3O4–Au nanoparticle for biomolecule immobilization and detection, J. Nanoparticle Research, 4 (2010) 1187-1196.
DOI: 10.1007/s11051-009-9749-0
Google Scholar
[21]
Y. Wang, Y. Shen, A. Xie, S. Li, X. Wang, Y. Cai, A simple method to construct bifunctional Fe3O4, Au hybrid nanostructures and tune their optical properties in the nearinfrared region, J. Phys. Chem., 10 (2010) 4297-4301.
DOI: 10.1021/jp9099804
Google Scholar
[22]
D.K. Kirui, D.A. Rey, C.A. Batt, Gold hybrid nanoparticles for targeted phototherapy and cancer imaging, Nanotechnology, 21 (2010) 1-10.
DOI: 10.1088/0957-4484/21/10/105105
Google Scholar
[23]
S. Jelveh, D.B. Chithrani, Gold nanostructures as a platform for combinational therapy in future cancer therapeutics, Cancers, 3 (2011) 1081-1110.
DOI: 10.3390/cancers3011081
Google Scholar
[24]
M.M. Tang, The elastic properties of the magnetic fluids with an air cavity created and transported by the magnetic field, PhD. Physics and Mathematics, Kursk, Southwestern State University, (2014).
Google Scholar
[25]
B.M. Berkovskii, V.F. Medvedev, M.S. Krakow, Magnetic fluid, Moscow, Chemistry, (1989).
Google Scholar
[26]
N.B. Uriev, A.V. Kuchin, Modelling of the dynamic state of disperse systems, Russian Chemical Reviews, 1 (2006) 36.
Google Scholar
[27]
S.I. Evdokimov, A.M. Panshin, M.J. Kanashvili, Magnetic fluid: new technology, Non- Ferrous Metallurgy, 2 (2008) 15-19.
Google Scholar
[28]
I.O. Protodyakonov, I.E. Lublinskaya, A.E. Ryzhkov, Hydrodynamics and Mass Transferof Liquid-Solid Bodies in Dispersed Systems, Leningrad, Chemistry, (1987).
Google Scholar