[1]
L.M. Robeson, Polymer Blends: a Comprehensive Review, Hanser Publications, Munich, (2007).
Google Scholar
[2]
D.R. Paul, C.B. Bucknall, Polymer blends, Wiley, New York, (1999).
Google Scholar
[3]
C. Vasile, Handbook of Polyolefins, CRC Press, Boca Raton, (2000).
Google Scholar
[4]
D. Nwabunma, T. Kyu, Polyolefin blends, John Wiley & Sons, Inc., Canada, (2007).
Google Scholar
[5]
G.H.J. Radusch, J. Ding, Compatibilization of heterogeneous polymer mixtures from the plastics waste streams, Frontiers in the science and technology of polymer recycling, Kluwer Academic Publishers, Dordrecht, (1998) 153-189.
DOI: 10.1007/978-94-017-1626-0_9
Google Scholar
[6]
E.E. Mastalygina, N.N. Kolesnikova, A.A. Popov, A.A. Olkhov, Environmental degradation study of multilevel biocomposites based on polyolefins, AIP Conf. Proc, (2015).
DOI: 10.1063/1.4932833
Google Scholar
[7]
A. Arkatkar, J. Arutchelvi, M. Sudhakar et al, Approaches to enhance the biodegradation of polyolefins, The Open Environmental Engineering Journal, 2 (2009) 68-80.
DOI: 10.2174/1874829500902010068
Google Scholar
[8]
P. Pantyukhov, N. Kolesnikova, A. Popov, Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers, Polym. Compos., 37(5) (2016) 1461-1472.
DOI: 10.1002/pc.23315
Google Scholar
[9]
O. Faruk, M. Sain, Biofiber Reinforcements in Composite Materials, Woodhead Publishing Ltd., Cambridge, (2015).
Google Scholar
[10]
TU 2211-015-00203521-99. Caplen (polypropylene). Specifications, Moscow, (1999).
Google Scholar
[11]
GOST 16337-77. High-density polyethylene. Specifications, FGUP Standartinform, (2005).
Google Scholar
[12]
E.E. Mastalygina, O.V. Shatalova, N.N. Kolesnikova, A.A. Popov, A.V. Krivandin, Modification of isotactic polypropylene by additives of low-density polyethylene and powdered cellulose, Inorg. Mater., 7 (1) (2016) 58-65.
DOI: 10.1134/s2075113316010147
Google Scholar
[13]
TU 5410-029-32957739-2005 Polycell PC (powdered cellulose), CJSC Polycell, (2007).
Google Scholar
[14]
E.E. Mastalygina, I.A. Varyan, N.N. Kolesnikova, T.V. Monakhova, S.G. Karpova, A.A. Popov, Effect of chemical composition and dimensional parameters of natural filler on structure formation and physical-chemical properties of polyethylene composites, AIP Conf. Proc., (2016).
DOI: 10.1063/1.4966443
Google Scholar
[15]
E.E. Mastalygina, N.N. Kolesnikova, S.G. Karpova, A.A. Popov, Morphology, thermal behaviour and dynamic properties of the blends based on isotactic polypropylene and low-density polyethylene, International Journal of Plastics Technology, 19(1) (2015).
DOI: 10.1007/s12588-015-9112-5
Google Scholar
[16]
BS EN ISO 527-1: 2012. Plastics. Determination of tensile properties. General principles, London, (2012).
Google Scholar
[17]
BS EN ISO 527-3: 1995/Cor 2: 2001. Plastics – Determination of tensile properties – Part 3: Test conditions for films and sheets, London, (2001).
Google Scholar
[18]
J.E. Mark, Physical Properties of Polymers Handbook, Springer Science & Business Media, Berlin, (2007).
Google Scholar
[19]
A. Boudenne, L. Ibos, Y. Candau, S. Thomas, Handbook of Multiphase polymer systems, John Wiley and Sons Ltd., Chichester, (2011).
DOI: 10.1002/9781119972020
Google Scholar
[20]
A.L. Volynskii, N.F. Bakeev, Solvent Crazing of Polymers, Elsevier, Amsterdam, (1995).
Google Scholar
[21]
H. Essabir, E. Hilali, A. Elgharad et al. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with nut shells of argan particles, Mater. Design, 49 (2013) 442-448.
DOI: 10.1016/j.matdes.2013.01.025
Google Scholar
[22]
A.K. Mohanty, M. Misra, L.T. Drzal, Natural Fibers, Biopolymers, and Biocomposites, Taylor&Francis Group, USA, (2005).
DOI: 10.1201/9780203508206.ch1
Google Scholar