Mechanical Properties and Stress-Strain Behaviour of Binary and Ternary Composites Based on Polyolefins and Vegetable Fillers

Article Preview

Abstract:

Binary and ternary composites based on isotactic polypropylene and low-density polyethylene in a wide range of ratios without and with filler content have been investigated. Micron-scale vegetable cellulosic components initiating biological degradation have been used as fillers for polymeric composites. The analysis of stress-strain behaviour of the composites has shown a non-additive dependency of elongation and tensile strength at break on blends composition. Based on this study results the composition and structure of polymeric phase of binary and ternary composites, as well as dimensional parameters of filler particles have a significant impact on stress-strain behaviour of the materials. The main regularities determining materials mechanical properties have been discovered, that, in turn, could be used for predicting service behaviour of composites under investigation.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

221-226

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.M. Robeson, Polymer Blends: a Comprehensive Review, Hanser Publications, Munich, (2007).

Google Scholar

[2] D.R. Paul, C.B. Bucknall, Polymer blends, Wiley, New York, (1999).

Google Scholar

[3] C. Vasile, Handbook of Polyolefins, CRC Press, Boca Raton, (2000).

Google Scholar

[4] D. Nwabunma, T. Kyu, Polyolefin blends, John Wiley & Sons, Inc., Canada, (2007).

Google Scholar

[5] G.H.J. Radusch, J. Ding, Compatibilization of heterogeneous polymer mixtures from the plastics waste streams, Frontiers in the science and technology of polymer recycling, Kluwer Academic Publishers, Dordrecht, (1998) 153-189.

DOI: 10.1007/978-94-017-1626-0_9

Google Scholar

[6] E.E. Mastalygina, N.N. Kolesnikova, A.A. Popov, A.A. Olkhov, Environmental degradation study of multilevel biocomposites based on polyolefins, AIP Conf. Proc, (2015).

DOI: 10.1063/1.4932833

Google Scholar

[7] A. Arkatkar, J. Arutchelvi, M. Sudhakar et al, Approaches to enhance the biodegradation of polyolefins, The Open Environmental Engineering Journal, 2 (2009) 68-80.

DOI: 10.2174/1874829500902010068

Google Scholar

[8] P. Pantyukhov, N. Kolesnikova, A. Popov, Preparation, structure, and properties of biocomposites based on low-density polyethylene and lignocellulosic fillers, Polym. Compos., 37(5) (2016) 1461-1472.

DOI: 10.1002/pc.23315

Google Scholar

[9] O. Faruk, M. Sain, Biofiber Reinforcements in Composite Materials, Woodhead Publishing Ltd., Cambridge, (2015).

Google Scholar

[10] TU 2211-015-00203521-99. Caplen (polypropylene). Specifications, Moscow, (1999).

Google Scholar

[11] GOST 16337-77. High-density polyethylene. Specifications, FGUP Standartinform, (2005).

Google Scholar

[12] E.E. Mastalygina, O.V. Shatalova, N.N. Kolesnikova, A.A. Popov, A.V. Krivandin, Modification of isotactic polypropylene by additives of low-density polyethylene and powdered cellulose, Inorg. Mater., 7 (1) (2016) 58-65.

DOI: 10.1134/s2075113316010147

Google Scholar

[13] TU 5410-029-32957739-2005 Polycell PC (powdered cellulose), CJSC Polycell, (2007).

Google Scholar

[14] E.E. Mastalygina, I.A. Varyan, N.N. Kolesnikova, T.V. Monakhova, S.G. Karpova, A.A. Popov, Effect of chemical composition and dimensional parameters of natural filler on structure formation and physical-chemical properties of polyethylene composites, AIP Conf. Proc., (2016).

DOI: 10.1063/1.4966443

Google Scholar

[15] E.E. Mastalygina, N.N. Kolesnikova, S.G. Karpova, A.A. Popov, Morphology, thermal behaviour and dynamic properties of the blends based on isotactic polypropylene and low-density polyethylene, International Journal of Plastics Technology, 19(1) (2015).

DOI: 10.1007/s12588-015-9112-5

Google Scholar

[16] BS EN ISO 527-1: 2012. Plastics. Determination of tensile properties. General principles, London, (2012).

Google Scholar

[17] BS EN ISO 527-3: 1995/Cor 2: 2001. Plastics – Determination of tensile properties – Part 3: Test conditions for films and sheets, London, (2001).

Google Scholar

[18] J.E. Mark, Physical Properties of Polymers Handbook, Springer Science & Business Media, Berlin, (2007).

Google Scholar

[19] A. Boudenne, L. Ibos, Y. Candau, S. Thomas, Handbook of Multiphase polymer systems, John Wiley and Sons Ltd., Chichester, (2011).

DOI: 10.1002/9781119972020

Google Scholar

[20] A.L. Volynskii, N.F. Bakeev, Solvent Crazing of Polymers, Elsevier, Amsterdam, (1995).

Google Scholar

[21] H. Essabir, E. Hilali, A. Elgharad et al. Mechanical and thermal properties of bio-composites based on polypropylene reinforced with nut shells of argan particles, Mater. Design, 49 (2013) 442-448.

DOI: 10.1016/j.matdes.2013.01.025

Google Scholar

[22] A.K. Mohanty, M. Misra, L.T. Drzal, Natural Fibers, Biopolymers, and Biocomposites, Taylor&Francis Group, USA, (2005).

DOI: 10.1201/9780203508206.ch1

Google Scholar