[1]
B.S. Sindu, S. Sasmal, Evaluation of mechanical characteristics of nano modified epoxy basedpolymers using molecular dynamics, Computational materials science, 96 (2015) 146-158.
DOI: 10.1016/j.commatsci.2014.09.003
Google Scholar
[2]
M.C.S. Ribeiro, S.P.B. Sousa, P.R. O Novoa, C.M. Pereira, A.J.M. Ferreira, Fire retardancy enhancement of unsaturated polyester polymer resin filled with nano and micro particulate oxide additives, 2014 International conference on manufacturing, optimization, Industrial and material Engineering (MOIME 2014), 58 (2014).
DOI: 10.1088/1757-899x/58/1/012020
Google Scholar
[3]
A.I. Abdullin, E.A. Emelyanycheva, A.M. Prokopy, I.N. Diyarov, Polymer Modified Bitumen Binder with Silicone Additive, Bulletin oft he Kazan Technological University, 7 (2010) 209-211.
Google Scholar
[4]
V. V Alekseenko, R.G. Zhitov, V.N. Kizhnyaev, A.V. Mituegin , New technologies for production of bituminous-rubber composite binding agent, Science and Technology in Road Industry, 1 (2010) 25-27.
Google Scholar
[5]
I. Ye. Kuzora, A.I. Yolshin, V.A. Mikishev, V.P. Tomin, Yu.P. Kuznetsov, N.V. Denisevich, Method for Obtaining Polymer Bitumen Composition, Patent RU 2237691, (2004).
Google Scholar
[6]
I.A. Artyunov, A.P. Stebakov, V.S. Tsvetkov, L.V. Tsvetkov, G.A. Stebakov, L.N. Kurov, Method for Obtaining Bitumen Composition for Asphalt Coatings, Patent RU 2238955, (2004).
Google Scholar
[7]
V.S. Glukhovskoi, A.R. Samotsvetov, V.F. Stepanov, V.V. Sitnikova, P.P. Brekhov, V.A. Nechinenniy, S.I. Dubina, L. A Yakmova, T.A. Yakovleva, Bitumen Composition, Patent RU 2226203, (2004).
Google Scholar
[8]
V.A. Gladkikh, E.V. Korolev, V.A. Smirnov, Modeling of the sulfur-bituminous concrete mix compaction, Advanced materials research, 1040 (2014) 525-528.
DOI: 10.4028/www.scientific.net/amr.1040.525
Google Scholar
[9]
A.L. Lyne, P. Redelius, M. Collin, B. Birgisson, Characterization of stripping properties of stone material in asphalt, Materials and structures. 46 (2013) 47-61.
DOI: 10.1617/s11527-012-9882-6
Google Scholar
[10]
G. Neser, V. Aytekin, Modification of bitumen-based roof covering material by glass reinforced polyester recyclate, Journal of material cycles and waste management, 17 (2015) 583-589.
DOI: 10.1007/s10163-014-0289-z
Google Scholar
[11]
D.A. Rozental, A.M. Syroyezhko, S.V. Dronov, A.A. Ivanov, Multipurpose Mastic, Patent RU 2220170, (2003).
Google Scholar
[12]
G.V.I. Heimericks, I.A.M. Van Hook, K.P. Walkering, J. Van Vestrenen, Bitumen Composition and Method for Extending its Service Life, Impact Copolymer Composition, Patent RU 2185403, (2002).
Google Scholar
[13]
G. Ferro, J.M. Tulliani, A. Lopez, P. Jagdale, New cementitious composite building material with enhanced toughness, The oretical and applied fracture mechanics, 76 (2015) 67-74.
DOI: 10.1016/j.tafmec.2015.01.005
Google Scholar
[14]
G.M. Chen, Y.H. He, H. Yang, J.F. Chen, Y.C. Guo, Compressive behavior of steel fiber reinforced recycled aggregate concrete after exposure to elevated temperatures, Construction and Building Materials, 71 (2014) 1-15.
DOI: 10.1016/j.conbuildmat.2014.08.012
Google Scholar
[15]
R. Zhang, X. Cheng, P. Hou, Z. Ye, Influences of nano-TiO2 on the properties of cement-based materials: Hydration and drying shrinkage, Construction and Building Materials, 81 (2015) 35-41.
DOI: 10.1016/j.conbuildmat.2015.02.003
Google Scholar
[16]
B.S. Semukhin, L.M. Altareva, AV. Votinov, Y.V. Oparenkov, Titanium and Zirconium Oxides in the Produktion of Glass Foam Materials, Vestnik of Tomsk State University of Architecture and Building, 5(52) (2015) 101-109.
Google Scholar
[17]
B.S. Semukhin, L.M. Altareva, A.V. Votinov, Y.V. Oparenkov, Foam glassceramics structure and properties control, Vestnik of Tomsk State University of Architecture and Building, 3(50) (2015) 171-177.
Google Scholar
[18]
N. Saba, M.T. Paridah, K. Abdan, N.A. Ibrahim, Effect of oil palm nano filler on mechanical and morphological properties of kenaf reinforced epoxy composites, Construction and building materials, 123 (2016) 15-26.
DOI: 10.1016/j.conbuildmat.2016.06.131
Google Scholar
[19]
A. Ricklefs, AM Thiele, G. Falzone, G. Sant, L. Pilon, Thermal conductivity of cementitious composites containing microencapsulated phase change materials, International journal of heat and mass transfer, 104 (2017) 71-82.
DOI: 10.1016/j.ijheatmasstransfer.2016.08.013
Google Scholar
[20]
R.G. Zhitov, V.N. Kizhnyaev, V.V. Alekseenko, A.I. Smirnow, Bitumen-rubber composite binders for production of asphalt concretes, Russian Journal of Applied Chemistry, 84(11) (2011) 1983-(1987).
DOI: 10.1134/s1070427211110255
Google Scholar
[21]
I. Harsini, M.M. Sadiq, P. Soroushian, AM. Balachandra, Polymer nanocomposites processed via self-assembly through introduction of nanoparticles, nanosheets, and nanofibers, Journal of materials science, 52 (4) (2017).
DOI: 10.1007/s10853-016-0485-4
Google Scholar
[22]
Y.H. Chen, Y.L. Wang, X.T. Shi, M. Jin, W.H. Cheng, L. Ren, Y.J. Wang, Hierarchical and reversible assembly of graphene oxide/polyvinyl alcohol hybrid stabilized Pickering emulsions and their templating formacroporous composite hydrogels, Carbon, 111 (2017).
DOI: 10.1016/j.carbon.2016.09.059
Google Scholar
[23]
J. Ouyang, Y.Q. Tan, D.J. Corr, S.P. Shah, Viscosity prediction of fresh cement asphalt emulsion pastes, Materials and Structures. 50(1) (2017) 59.
DOI: 10.1617/s11527-016-0897-2
Google Scholar
[24]
S. G. Abramyan, R. Kh. Ishmametov, Strengthening Timber Roof Trusses during Building Construction and Reconstruction, Procedia Engineering, 150 (2016) 2133-2137.
DOI: 10.1016/j.proeng.2016.07.253
Google Scholar
[25]
O.V. Oganesyan, Use of Nanomaterials for Reconstruction of Structural Housing Elements: Second Life of NICOBAND, collected papers of the conference Construction – Building Living Environment, (2016) 288-291.
Google Scholar
[26]
S.G. Abramyan, O.V. Oganesyan, Innovative Technologies and Materials in Housing Reconstruction and Retrofitting: Near-Term Outlook, International scientific review. 1 (11) (2016) 30-37.
Google Scholar