[1]
S.H. Chae, Y.H. Lee, Carbon nanotubes and graphene towards soft electronics, Nano Convergence, 1 (2014) 15.
Google Scholar
[2]
P.R. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures, J Nanosci Nanotechnol, 7 (2007) 1-29.
Google Scholar
[3]
P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nature Photonics, 2 (2008) 341-350.
DOI: 10.1038/nphoton.2008.94
Google Scholar
[4]
Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L. -M. Peng, W. Zhou, J. Liu, W. Zhou, S. Xie, Carbon nanotube arrays based high-performance infrared photodetector [Invited], Opt. Mater. Express, 2(2012) 839-848.
DOI: 10.1364/ome.2.000839
Google Scholar
[5]
D.W.H. Fam, Al. Palaniappan, A.I.Y. Tok, B. Liedberg, S.M. Moochhala, A review on technological aspects influencing commercialization of carbon nanotube sensors, Sensors and Actuators B: Chemical, 157 (2011) 1-7.
DOI: 10.1016/j.snb.2011.03.040
Google Scholar
[6]
O'Connell, M.J., et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, 297 (2002) 593-596.
Google Scholar
[7]
A.C. Brandao-Silva, R.M.A. Lima, C. Fantini, A. Jesus-Silva, M.A.R.C. Alencar, J. M. Hickmann, R.M. Jain, M.S. Strano, E.J.S. Fonseca, Near infrared nonlinear refractive index dispersion of metallic and semiconducting single-wall carbon nanotube colloids, Carbon, 77 (2014).
DOI: 10.1016/j.carbon.2014.06.008
Google Scholar
[8]
D.R.B. Valadão, D.G. Pires, M. A.R.C. Alencar, J.M. Hickmann, C. Fantini, M.A. Pimenta, E.J.S. Fonseca, Investigation of the electronic nonlinear refraction index of single-wall carbon nanotubes wrapped with different surfactants, Opt. Mater. Express, 2 (2012).
DOI: 10.1364/ome.2.000749
Google Scholar
[9]
A.V. Venediktova, et al., Stability and optical limiting properties of single-wall carbon nanotubes dispersion in a binary water-glycerol solvent, Appl. Phys. Lett., 100 (2012) 251903.
DOI: 10.1063/1.4729790
Google Scholar
[10]
A. Yu. Vlasov, at al., Effects of antifreezes and bundled material on the stability and optical limiting in aqueous suspensions of carbon nanotubes, Physica Status Solidi (B), 249 (2012) 2341-2344.
DOI: 10.1002/pssb.201200089
Google Scholar
[11]
D.A. Videnichev, I.M. Belousova, Оptical limiting of high-repetition-rate laser pulses by carbon nanofibers suspended in polydimethylsiloxane, Applied Physics B: Lasers and Optics, 115 (2014) 401-406.
DOI: 10.1007/s00340-013-5615-y
Google Scholar
[12]
I.M. Belousova, Nonlinear optical limiters of pulsed laser radiation based on carbon-containing nanostructures in viscous and solid matrices, Polymers for Advanced Technologies, 25 (2014) 1008-1013.
DOI: 10.1002/pat.3343
Google Scholar
[13]
J.G. Duque, C.G. Densmore, S.K. Doorn, Saturation of Surfactant Structure at the Single-Walled Carbon Nanotube Surface, J. Am. Chem. Soc., 132 (2010) 16165-16175.
DOI: 10.1021/ja106836f
Google Scholar
[14]
L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 128-130 (2006) 37.
DOI: 10.1016/j.cis.2006.11.007
Google Scholar
[15]
O.S. Zueva, et al., Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russ. Chem. Bull. (Int. Ed. ) 65 (2016) 1208–1215.
DOI: 10.1007/s11172-016-1437-5
Google Scholar
[16]
A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: formation of the microenvironment, J. Phys. Conf. Ser., 690 (2016) 012030.
DOI: 10.1088/1742-6596/690/1/012030
Google Scholar
[17]
N. Li, R.K. Thomas, A.R. Rennie, Effect of pH, surface charge and counter-ions on the Adsorption of Sodium Dodecyl Sulfate to the Sapphire/Solution Interface, J Colloid Interface Sci., 369 (2012) 287.
DOI: 10.1016/j.jcis.2012.04.026
Google Scholar
[18]
Yu.F. Zuev, O.I. Gnezdilov, O.S. Zueva, and O.G. Us'yarov, Effective Self_Diffusion Coefficients of Ions in Sodium Dodecyl Sulfate Micellar Solutions, Colloid Journal, 73 (2011) 59-64.
DOI: 10.1134/s1061933x11010224
Google Scholar
[19]
O.I. Gnezdilov, Yu.F. Zuev, O.S. Zueva, K.S. Potarikina, O.G. Us'yarov, Self-Diffusion of Ionic Surfactants and Counterions in Premicellar and Micellar Solutions of Sodium, Lithium and Cesium Dodecyl Sulfates as Studied by NMR-Diffusometry, Applied Magnetic Resonance, 40 (2011).
DOI: 10.1007/s00723-010-0185-1
Google Scholar
[20]
B.Z. Idiyatullin, K.S. Potarikina, Yu.F. Zuev, O.S. Zueva, O.G. Us'yarov, Association of Sodium Dodecyl Sulfate in Aqueous Solutions According to Chemical Shifts in 1H NMR Spectra, Colloid Journal, 75 (2013) 532–537.
DOI: 10.1134/s1061933x13050037
Google Scholar
[21]
A.T. Gubaidullin, et al., Structure and dynamics of concentrated micellar solutions of sodium dodecyl sulfate, Russ. Chem. Bull, 65 (2016) 158–166.
DOI: 10.1007/s11172-016-1278-2
Google Scholar
[22]
R. B Viana, A.B.F. da Silva, A.S. Pimentel, Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants, Advances in Physical Chemistry, 2012 (2012) 903272.
DOI: 10.1155/2012/903272
Google Scholar
[23]
S. Pandey, P.R. Bagwe, D.O. Shah, Effect of counterions on surface and foaming properties of dodecyl sulfate, Journal of Colloid and Interface Science, 267 (2003) 160–166.
DOI: 10.1016/j.jcis.2003.06.001
Google Scholar
[24]
D.R. Scheuing J.G. Weers, A Fourier Transform Infrared Spectroscopic Study of Dodecyltrimethylammonium Chloride/Sodium Dodecyl Sulfate Surfactant Mixtures, Langmuir, 6 (1990) 665-671.
DOI: 10.1021/la00093a023
Google Scholar