Creating Carbon Nanotubes Microenvironment in Surfactant Water Solutions

Article Preview

Abstract:

The infrared absorption spectra of aqueous dispersions of carbon nanotubes in the presence of surfactants and alkali metal salts in the frequency range from 1000 cm-1 to 3000 cm-1 have been studied. The possibility of controlling the characteristics of local environment of carbon nanotubes by varying external electrolyte and modulation the surfactant micelle structure has been shown.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

342-347

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.H. Chae, Y.H. Lee, Carbon nanotubes and graphene towards soft electronics, Nano Convergence, 1 (2014) 15.

Google Scholar

[2] P.R. Bandaru, Electrical Properties and Applications of Carbon Nanotube Structures, J Nanosci Nanotechnol, 7 (2007) 1-29.

Google Scholar

[3] P. Avouris, M. Freitag, V. Perebeinos, Carbon-nanotube photonics and optoelectronics, Nature Photonics, 2 (2008) 341-350.

DOI: 10.1038/nphoton.2008.94

Google Scholar

[4] Q. Zeng, S. Wang, L. Yang, Z. Wang, T. Pei, Z. Zhang, L. -M. Peng, W. Zhou, J. Liu, W. Zhou, S. Xie, Carbon nanotube arrays based high-performance infrared photodetector [Invited], Opt. Mater. Express, 2(2012) 839-848.

DOI: 10.1364/ome.2.000839

Google Scholar

[5] D.W.H. Fam, Al. Palaniappan, A.I.Y. Tok, B. Liedberg, S.M. Moochhala, A review on technological aspects influencing commercialization of carbon nanotube sensors, Sensors and Actuators B: Chemical, 157 (2011) 1-7.

DOI: 10.1016/j.snb.2011.03.040

Google Scholar

[6] O'Connell, M.J., et al. Band Gap Fluorescence from Individual Single-Walled Carbon Nanotubes, Science, 297 (2002) 593-596.

Google Scholar

[7] A.C. Brandao-Silva, R.M.A. Lima, C. Fantini, A. Jesus-Silva, M.A.R.C. Alencar, J. M. Hickmann, R.M. Jain, M.S. Strano, E.J.S. Fonseca, Near infrared nonlinear refractive index dispersion of metallic and semiconducting single-wall carbon nanotube colloids, Carbon, 77 (2014).

DOI: 10.1016/j.carbon.2014.06.008

Google Scholar

[8] D.R.B. Valadão, D.G. Pires, M. A.R.C. Alencar, J.M. Hickmann, C. Fantini, M.A. Pimenta, E.J.S. Fonseca, Investigation of the electronic nonlinear refraction index of single-wall carbon nanotubes wrapped with different surfactants, Opt. Mater. Express, 2 (2012).

DOI: 10.1364/ome.2.000749

Google Scholar

[9] A.V. Venediktova, et al., Stability and optical limiting properties of single-wall carbon nanotubes dispersion in a binary water-glycerol solvent, Appl. Phys. Lett., 100 (2012) 251903.

DOI: 10.1063/1.4729790

Google Scholar

[10] A. Yu. Vlasov, at al., Effects of antifreezes and bundled material on the stability and optical limiting in aqueous suspensions of carbon nanotubes, Physica Status Solidi (B), 249 (2012) 2341-2344.

DOI: 10.1002/pssb.201200089

Google Scholar

[11] D.A. Videnichev, I.M. Belousova, Оptical limiting of high-repetition-rate laser pulses by carbon nanofibers suspended in polydimethylsiloxane, Applied Physics B: Lasers and Optics, 115 (2014) 401-406.

DOI: 10.1007/s00340-013-5615-y

Google Scholar

[12] I.M. Belousova, Nonlinear optical limiters of pulsed laser radiation based on carbon-containing nanostructures in viscous and solid matrices, Polymers for Advanced Technologies, 25 (2014) 1008-1013.

DOI: 10.1002/pat.3343

Google Scholar

[13] J.G. Duque, C.G. Densmore, S.K. Doorn, Saturation of Surfactant Structure at the Single-Walled Carbon Nanotube Surface, J. Am. Chem. Soc., 132 (2010) 16165-16175.

DOI: 10.1021/ja106836f

Google Scholar

[14] L. Vaisman, H.D. Wagner, G. Marom, The role of surfactants in dispersion of carbon nanotubes, Advances in Colloid and Interface Science, 128-130 (2006) 37.

DOI: 10.1016/j.cis.2006.11.007

Google Scholar

[15] O.S. Zueva, et al., Structure and properties of aqueous dispersions of sodium dodecyl sulfate with carbon nanotubes, Russ. Chem. Bull. (Int. Ed. ) 65 (2016) 1208–1215.

DOI: 10.1007/s11172-016-1437-5

Google Scholar

[16] A.O. Borovskaya, B.Z. Idiatullin, O.S. Zueva, Carbon nanotubes in the surfactants dispersion: formation of the microenvironment, J. Phys. Conf. Ser., 690 (2016) 012030.

DOI: 10.1088/1742-6596/690/1/012030

Google Scholar

[17] N. Li, R.K. Thomas, A.R. Rennie, Effect of pH, surface charge and counter-ions on the Adsorption of Sodium Dodecyl Sulfate to the Sapphire/Solution Interface, J Colloid Interface Sci., 369 (2012) 287.

DOI: 10.1016/j.jcis.2012.04.026

Google Scholar

[18] Yu.F. Zuev, O.I. Gnezdilov, O.S. Zueva, and O.G. Us'yarov, Effective Self_Diffusion Coefficients of Ions in Sodium Dodecyl Sulfate Micellar Solutions, Colloid Journal, 73 (2011) 59-64.

DOI: 10.1134/s1061933x11010224

Google Scholar

[19] O.I. Gnezdilov, Yu.F. Zuev, O.S. Zueva, K.S. Potarikina, O.G. Us'yarov, Self-Diffusion of Ionic Surfactants and Counterions in Premicellar and Micellar Solutions of Sodium, Lithium and Cesium Dodecyl Sulfates as Studied by NMR-Diffusometry, Applied Magnetic Resonance, 40 (2011).

DOI: 10.1007/s00723-010-0185-1

Google Scholar

[20] B.Z. Idiyatullin, K.S. Potarikina, Yu.F. Zuev, O.S. Zueva, O.G. Us'yarov, Association of Sodium Dodecyl Sulfate in Aqueous Solutions According to Chemical Shifts in 1H NMR Spectra, Colloid Journal, 75 (2013) 532–537.

DOI: 10.1134/s1061933x13050037

Google Scholar

[21] A.T. Gubaidullin, et al., Structure and dynamics of concentrated micellar solutions of sodium dodecyl sulfate, Russ. Chem. Bull, 65 (2016) 158–166.

DOI: 10.1007/s11172-016-1278-2

Google Scholar

[22] R. B Viana, A.B.F. da Silva, A.S. Pimentel, Infrared Spectroscopy of Anionic, Cationic, and Zwitterionic Surfactants, Advances in Physical Chemistry, 2012 (2012) 903272.

DOI: 10.1155/2012/903272

Google Scholar

[23] S. Pandey, P.R. Bagwe, D.O. Shah, Effect of counterions on surface and foaming properties of dodecyl sulfate, Journal of Colloid and Interface Science, 267 (2003) 160–166.

DOI: 10.1016/j.jcis.2003.06.001

Google Scholar

[24] D.R. Scheuing J.G. Weers, A Fourier Transform Infrared Spectroscopic Study of Dodecyltrimethylammonium Chloride/Sodium Dodecyl Sulfate Surfactant Mixtures, Langmuir, 6 (1990) 665-671.

DOI: 10.1021/la00093a023

Google Scholar