Formation Structure and Properties of Parts from Titanium Alloys Produced by Direct Laser Deposition

Article Preview

Abstract:

In this article, perspective using of the laser deposition method for manufacture details from the titanium alloy VT20 is considered. Dependence on a structure of the fractional composition is shown. Study of the structure and properties of parts, which were produced by DLD technology using different modes and under different conditions.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

535-541

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L.E. Murr, S.M. Gaytan, D.A. Ramirez., E. Martinez, J. Hernandez, K.N. Amato, P. W. Shindo, R. Medina,. R. B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Material Science, 28 (2012).

DOI: 10.1016/s1005-0302(12)60016-4

Google Scholar

[2] D. Gu, New metallic materials development by laser additive manufacturing, Laser Surface Engineering, (2015) 163-180.

DOI: 10.1016/b978-1-78242-074-3.00007-6

Google Scholar

[3] E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, J. of Mach. T. and Manuf, 46 (2006) 1459-1468.

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[4] B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Additive manufacturing by direct metal deposition, Adv. Mat. Proc., 169 (2011) 33-36.

Google Scholar

[5] S.G. Glazunov, K.K. Jasinsky, Titanium alloys for aircraft technics and other application, Technology of light alloys, 7-8 (1993) 47-54.

Google Scholar

[6] P.G. Demyshev, Research and improvement of the technological process for the formation of the structure of welded joints of highly loaded structures of titanium alloy, Engineering Science, Komsomolsk-on-Amur, (2007).

Google Scholar

[7] G.A. Turichin, E.V. Zemlyakov, O.G. Klimova., K.D. Babkin, F.A. Shamraj, D. Yu. Kolodjazhny, Direct laser deposition is perspective additive technology for aircraft building Welding International, 3 (2015) 54-57.

Google Scholar

[8] J. Yang, F. Li Wang, X. Zeng, Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication, Jour. of Mat. Proc. Tech, 225(2015) 229-239.

DOI: 10.1016/j.jmatprotec.2015.06.002

Google Scholar

[9] O.A. Ojo, N.L. Richards, M.C. Chaturvedi Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy, Script. Mat., 50(2004) 641-646.

DOI: 10.1016/j.scriptamat.2003.11.025

Google Scholar

[10] G. Turichin, E. Zemlyakov, O. Klimova, K. Babkin, , Technology of high-speed direct laser deposition from Ni-based superalloys, Physics Procedia, 83(2015) 716-722.

DOI: 10.1016/j.phpro.2016.08.073

Google Scholar

[11] M. Man, Z. Wang, D. Wang, X. Zeng, Control of shape and performance for direct laser fabrication of precision largescale metal parts with 316l stainless steel, Optics Laser Technology, 45(2013) 209- 216.

DOI: 10.1016/j.optlastec.2012.07.002

Google Scholar

[12] Y. Zhong, L. Liu, S. Wikman, Intragranular cellular segregation network structure strengthening 316l stainless steel prepared by selective laser melting, Journal of Nuclear Materials, 470(2016) 170-178.

DOI: 10.1016/j.jnucmat.2015.12.034

Google Scholar

[13] M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Materials Science and Engineering, A 616 (2014) 1-11.

DOI: 10.1016/j.msea.2014.07.086

Google Scholar

[14] E. Brand, V. Michailov, B. Viehweger, C. Leyens, Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads, Surface & Coatings Technology, 206 (2011) 1130-1141.

DOI: 10.1016/j.surfcoat.2011.07.094

Google Scholar

[15] B. Baufeld, E. Brandl, O. Biest, Wire based additive layer manufacturing: Com-parison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, Journal of Materials Processing Technology, 21(2011).

DOI: 10.1016/j.jmatprotec.2011.01.018

Google Scholar

[16] Q. Zhang, J. Chen, X. Lin, H. Tan, W.D. Huang, Grain morphology control and texture characterization of laser solidformed Ti6Al2Sn2Zr3Mo1. 5Cr2Nb titanium alloy, Journal of Materials Processing Technology, 238 (2016) 202-211.

DOI: 10.1016/j.jmatprotec.2016.07.011

Google Scholar

[17] J. Zhanga, F. Liou, W. Seufzer, K. Taminger, A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD), Additive Manufacturing, 11 (2016) 32-39.

DOI: 10.1016/j.addma.2016.04.004

Google Scholar

[18] G.A. Ravi, C. Dance, S. Dilworth, M.A. Moataz, Fabrication of large Ti–6Al–4V structures by direct laser deposition, Journal of Alloys and Compounds, 629(2015) 351-361.

DOI: 10.1016/j.jallcom.2014.12.234

Google Scholar

[19] J.S. Keist, T. A Palmer, Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition, Materials and Design, 106 (2016) 482-494.

DOI: 10.1016/j.matdes.2016.05.045

Google Scholar

[20] G.A. Turichin, O.G. Klimova, E. V Zemlyakov, K.D. Babkin, D.Y. Kolodyazhnyy, F.A. Shamray, A. Y, Petrovskiy, P.V. Technological, Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy, IOP Conference Series: Materials Science and Engineering, 125 (2016).

DOI: 10.1016/j.phpro.2015.11.054

Google Scholar

[21] G. A Turichin, V.V. Somonov, K.D. Babkin, E.V. Zemlyakov, O.G. Klimova, High-Speed Direct Laser Deposition: Technology, Equipment and Materials, Physics Procedia, 83 (2016) 674-683.

DOI: 10.1016/j.phpro.2016.09.001

Google Scholar

[22] X.G. Fan, H. Yang, P.F. Gao, S.L. Yan, Dependence of microstructure morphology on pro-cessing in subtransus isothermal local loading forming of TA15 titanium alloy, Materials Science and Engineering, A 546 (2012) 46-52.

DOI: 10.1016/j.msea.2012.03.021

Google Scholar