[1]
L.E. Murr, S.M. Gaytan, D.A. Ramirez., E. Martinez, J. Hernandez, K.N. Amato, P. W. Shindo, R. Medina,. R. B. Wicker, Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies, Journal of Material Science, 28 (2012).
DOI: 10.1016/s1005-0302(12)60016-4
Google Scholar
[2]
D. Gu, New metallic materials development by laser additive manufacturing, Laser Surface Engineering, (2015) 163-180.
DOI: 10.1016/b978-1-78242-074-3.00007-6
Google Scholar
[3]
E.C. Santos, M. Shiomi, K. Osakada, T. Laoui, Rapid manufacturing of metal components by laser forming, J. of Mach. T. and Manuf, 46 (2006) 1459-1468.
DOI: 10.1016/j.ijmachtools.2005.09.005
Google Scholar
[4]
B. Dutta, S. Palaniswamy, J. Choi, L.J. Song, J. Mazumder, Additive manufacturing by direct metal deposition, Adv. Mat. Proc., 169 (2011) 33-36.
Google Scholar
[5]
S.G. Glazunov, K.K. Jasinsky, Titanium alloys for aircraft technics and other application, Technology of light alloys, 7-8 (1993) 47-54.
Google Scholar
[6]
P.G. Demyshev, Research and improvement of the technological process for the formation of the structure of welded joints of highly loaded structures of titanium alloy, Engineering Science, Komsomolsk-on-Amur, (2007).
Google Scholar
[7]
G.A. Turichin, E.V. Zemlyakov, O.G. Klimova., K.D. Babkin, F.A. Shamraj, D. Yu. Kolodjazhny, Direct laser deposition is perspective additive technology for aircraft building Welding International, 3 (2015) 54-57.
Google Scholar
[8]
J. Yang, F. Li Wang, X. Zeng, Cracking behavior and control of Rene 104 superalloy produced by direct laser fabrication, Jour. of Mat. Proc. Tech, 225(2015) 229-239.
DOI: 10.1016/j.jmatprotec.2015.06.002
Google Scholar
[9]
O.A. Ojo, N.L. Richards, M.C. Chaturvedi Contribution of constitutional liquation of gamma prime precipitate to weld HAZ cracking of cast Inconel 738 superalloy, Script. Mat., 50(2004) 641-646.
DOI: 10.1016/j.scriptamat.2003.11.025
Google Scholar
[10]
G. Turichin, E. Zemlyakov, O. Klimova, K. Babkin, , Technology of high-speed direct laser deposition from Ni-based superalloys, Physics Procedia, 83(2015) 716-722.
DOI: 10.1016/j.phpro.2016.08.073
Google Scholar
[11]
M. Man, Z. Wang, D. Wang, X. Zeng, Control of shape and performance for direct laser fabrication of precision largescale metal parts with 316l stainless steel, Optics Laser Technology, 45(2013) 209- 216.
DOI: 10.1016/j.optlastec.2012.07.002
Google Scholar
[12]
Y. Zhong, L. Liu, S. Wikman, Intragranular cellular segregation network structure strengthening 316l stainless steel prepared by selective laser melting, Journal of Nuclear Materials, 470(2016) 170-178.
DOI: 10.1016/j.jnucmat.2015.12.034
Google Scholar
[13]
M. Simonelli, Y.Y. Tse, C. Tuck, Effect of the build orientation on the mechanical properties and fracture modes of SLM Ti–6Al–4V, Materials Science and Engineering, A 616 (2014) 1-11.
DOI: 10.1016/j.msea.2014.07.086
Google Scholar
[14]
E. Brand, V. Michailov, B. Viehweger, C. Leyens, Deposition of Ti–6Al–4V using laser and wire, part II: Hardness and dimensions of single beads, Surface & Coatings Technology, 206 (2011) 1130-1141.
DOI: 10.1016/j.surfcoat.2011.07.094
Google Scholar
[15]
B. Baufeld, E. Brandl, O. Biest, Wire based additive layer manufacturing: Com-parison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition, Journal of Materials Processing Technology, 21(2011).
DOI: 10.1016/j.jmatprotec.2011.01.018
Google Scholar
[16]
Q. Zhang, J. Chen, X. Lin, H. Tan, W.D. Huang, Grain morphology control and texture characterization of laser solidformed Ti6Al2Sn2Zr3Mo1. 5Cr2Nb titanium alloy, Journal of Materials Processing Technology, 238 (2016) 202-211.
DOI: 10.1016/j.jmatprotec.2016.07.011
Google Scholar
[17]
J. Zhanga, F. Liou, W. Seufzer, K. Taminger, A coupled finite element cellular automaton model to predict thermal history and grain morphology of Ti-6Al-4V during direct metal deposition (DMD), Additive Manufacturing, 11 (2016) 32-39.
DOI: 10.1016/j.addma.2016.04.004
Google Scholar
[18]
G.A. Ravi, C. Dance, S. Dilworth, M.A. Moataz, Fabrication of large Ti–6Al–4V structures by direct laser deposition, Journal of Alloys and Compounds, 629(2015) 351-361.
DOI: 10.1016/j.jallcom.2014.12.234
Google Scholar
[19]
J.S. Keist, T. A Palmer, Role of geometry on properties of additively manufactured Ti-6Al-4V structures fabricated using laser based directed energy deposition, Materials and Design, 106 (2016) 482-494.
DOI: 10.1016/j.matdes.2016.05.045
Google Scholar
[20]
G.A. Turichin, O.G. Klimova, E. V Zemlyakov, K.D. Babkin, D.Y. Kolodyazhnyy, F.A. Shamray, A. Y, Petrovskiy, P.V. Technological, Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy, IOP Conference Series: Materials Science and Engineering, 125 (2016).
DOI: 10.1016/j.phpro.2015.11.054
Google Scholar
[21]
G. A Turichin, V.V. Somonov, K.D. Babkin, E.V. Zemlyakov, O.G. Klimova, High-Speed Direct Laser Deposition: Technology, Equipment and Materials, Physics Procedia, 83 (2016) 674-683.
DOI: 10.1016/j.phpro.2016.09.001
Google Scholar
[22]
X.G. Fan, H. Yang, P.F. Gao, S.L. Yan, Dependence of microstructure morphology on pro-cessing in subtransus isothermal local loading forming of TA15 titanium alloy, Materials Science and Engineering, A 546 (2012) 46-52.
DOI: 10.1016/j.msea.2012.03.021
Google Scholar