[1]
A.A. Fomin, V.G. Gusev, R.V. Yudin, N.F. Timerbaev and O. Yu. Retyunskiy, Mechanical treatment of raw waste lumber an effective way to preserve the ecology and resources, IOP Conference Series: Materials Science and Engineering, 142(1) (2016).
DOI: 10.1088/1757-899x/142/1/012091
Google Scholar
[2]
N.F. Timerbaev, R.G. Safin, D.F. Ziatdinova, A.A. Fomin and A.A. Mokhovikov, The development of experimental setups and experimental studies of the process of energy-technological processing of wood, IOP Conference Series: Materials Science and Engineering, 142(1) (2016).
DOI: 10.1088/1757-899x/142/1/012096
Google Scholar
[3]
S. Sanchez, F. Moreno-Navarro, and M.C. Rubio-Gamez, Viability of using end-of-life tire pads as under sleeper pads in railway, Construction and Building Materials, 64 (2014) 150-156.
DOI: 10.1016/j.conbuildmat.2014.04.013
Google Scholar
[4]
A. Alireza, T. Tabarsa, and F. Amosi, Evaluation of using waste timber railway sleepers in wood–cement composite materials, Construction and Building Materials, 27. 1 (2012) 126-129.
DOI: 10.1016/j.conbuildmat.2011.08.016
Google Scholar
[5]
D.B. Prosvirnikov, D.F. Ziatdinova, N.F. Timerbaev, V.A. Saldaev and K.H. Gilfanov, Mathematical modelling of the steam explosion treatment process for pre-impregnated lignocellulosic material, IOP Conference Series: Materials Science and Engineering, 124(1) 2016 012-087.
DOI: 10.1088/1757-899x/124/1/012087
Google Scholar
[6]
V.A. Saldaev, D.B. Prosvirnikov, V.V. Stepanov, A.R. Sadrtdinov and A.N. Kapustin, Equipment for the production of wood-polymeric thermal insulation materials, IOP Conference Series: Materials Science and Engineering, 142(1) (2016) 012-097.
DOI: 10.1088/1757-899x/142/1/012097
Google Scholar
[7]
R. Safin, S. Barcik, A. Shaikhutdinova, A. Safina, P. Kaynov and E. Razumov, Development of the energy-saving technology of thermal modification of wood in saturated steam, Acta Facultatis Xylologiae, 57(2) (2015) 39-47.
Google Scholar
[8]
D.B. Prosvirnikov, R.G. Safin, D.F. Ziatdinova, N.F. Timerbaev, and V.A. Lashkov, Multifactorial modelling of high-temperature treatment of timber in the saturated water steam medium, IOP Conference Series: Materials Science and Engineering, 124(1) (2016).
DOI: 10.1088/1757-899x/124/1/012088
Google Scholar
[9]
A.R. Sadrtdinov, R.G. Safin, N.F. Timerbaev, D.F. Ziatdinova and N.A. Saprykina, The development of equipment for the disposal of solid organic waste and optimization of its operation, IOP Conference Series: Materials Science and Engineering, 142(1) (2016).
DOI: 10.1088/1757-899x/142/1/012095
Google Scholar
[10]
R.R. Safin, R.R. Khasanshin, A.L. Timerbaeva, and A.V. Safina, Research of the physical and energetic properties of the pellets based thermomodified raw wood, Russian Engineering Physics Journal, 88(4) (2015) 958-961.
DOI: 10.1007/s10891-015-1270-y
Google Scholar
[11]
D.V. Tuntsev, R.R. Safin, R.G. Hismatov, R.A. Halitov and V.I. Petrov, Modeling of thermal treatment of wood waste in the gasifiers, Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2015, no. 7414929.
DOI: 10.1109/meacs.2015.7414929
Google Scholar
[12]
V.A. Lashkov, Z.G. Sattarova, M.A. Taymarov, M.K. Gerasimov and R.A. Halitov, Modeling of a reduction zone of the gasifier installation, IOP Conference Series: Materials Science and Engineering, 124(1) (2016) 012111.
DOI: 10.1088/1757-899x/124/1/012111
Google Scholar
[13]
R.R. Safin, R.R. Khasanshin, A.R. Shaikhutdinova and A.V. Safina, Research of heating rate while termo modification of wood, World Applied Sciences Journal, 30(11) (2014) 1618-1621.
Google Scholar
[14]
A.R. Sadrtdinov, L.M. Esmagilova, V.A. Saldaev, Z.G. Sattarova and A.A. Mokhovikov, Mathematical modeling for the development of equipment for thermochemical processing of wood waste in to dimethyl ether, IOP Conference Series: Materials Science and Engineering, 142(1) (2016).
DOI: 10.1088/1757-899x/142/1/012094
Google Scholar
[15]
A.A. Fomin, V.G. Gusev, R.G. Safin and R.R. Safin, Dispersion of the margin removed in complex milling, Russian Engineering Research, 35(6) (2015) 417-420.
DOI: 10.3103/s1068798x15060040
Google Scholar
[16]
A.S. Hameed and A.P. Shashikala, Suitability of rubber concrete for railway sleepers, Perspectives in Science, 8 (2016) 32-35.
DOI: 10.1016/j.pisc.2016.01.011
Google Scholar
[17]
W. Ferdous, et al., Composite railway sleepers–Recent developments, challenges and future prospects, Composite Structures, 134 (2015) 158-168.
DOI: 10.1016/j.compstruct.2015.08.058
Google Scholar
[18]
N.O. Bezgin, Climate effects on the shoulder width measurements of prestressed concrete high speed railway sleepers of ballasted tracks, Measurement, 75 (2015) 201-209.
DOI: 10.1016/j.measurement.2015.07.057
Google Scholar
[19]
W. Ferdous, M. Allan, Failures of mainline railway sleepers and suggested remedies–review of current practice, Engineering Failure Analysis, 44 (2014) 17-35.
DOI: 10.1016/j.engfailanal.2014.04.020
Google Scholar
[20]
A.R. Sadrtdinov, R.G. Safin, M.K. Gerasimov, V.I. Petrov, K.K. Gilfanov, The mathematical description of the gasification process of woody biomass in installations with a plasma heat source for producing synthesis gas, IOP Conference Series: Materials Science and Engineering, 124(1) (2016).
DOI: 10.1088/1757-899x/124/1/012092
Google Scholar
[21]
A.M. Remennikov, K. Sakdirat, Experimental load rating of aged railway concrete sleepers, Engineering Structures, 76 (2014) 147-162.
DOI: 10.1016/j.engstruct.2014.06.032
Google Scholar
[22]
M. Guerrieri, T. Dario, D. Mario, High Performance Bi-Block Sleeper for Improvement the performances of ballasted railway track, AASRI Procedia, 3 (2012) 457-462.
DOI: 10.1016/j.aasri.2012.11.072
Google Scholar
[23]
S.M. Sanchez, et al., An alternative sustainable railway maintenance technique based on the use of rubber particles, Journal of Cleaner Production, 142 (2017) 3850-3858.
DOI: 10.1016/j.jclepro.2016.10.077
Google Scholar
[24]
J.E. Fluet, Geosynthetics and North American Railroads. " Geotextiles and Geomembranes 3, 2-3 (1986) 201-218.
DOI: 10.1016/0266-1144(86)90008-7
Google Scholar
[25]
A.R. Sadrtdinov, Z.G. Sattarova, D.B. Prosvirnikov and D.V. Tuntsev, Modeling of thermal treatment of wood waste in the gasifiers, Proceedings of 2015 International Conference on Mechanical Engineering, Automation and Control Systems, MEACS 2015, no. 7414914.
DOI: 10.1109/meacs.2015.7414914
Google Scholar
[26]
R.M. Bajracharya, et al., An overview of mechanical properties and durability of glass-fibre reinforced recycled mixed plastic waste composites, Materials & Design, 62 (2014) 98-112.
DOI: 10.1016/j.matdes.2014.04.081
Google Scholar
[27]
P.K. Dutta, D. Hui, Low-temperature and freeze-thaw durability of thick composites, Composites Part B: Engineering 27, 3-4 (1996) 371-379.
DOI: 10.1016/1359-8368(96)00007-8
Google Scholar
[28]
A. Manalo, Behaviour of fibre composite sandwich structures: a case study on railway sleeper application, Diss. University of Southern Queensland, (2011).
Google Scholar
[29]
P. Kim, et al., Recovery of creosote from used railroad ties by thermal desorption, Energy, 111 (2016) 226-236.
DOI: 10.1016/j.energy.2016.05.117
Google Scholar