Atomic Structure Design of Rapidly Quenched Amorphous Cobalt-Based Alloys

Article Preview

Abstract:

The research presents the atomic structure investigation of amorphous rapidly quenched Co58Ni10Fe5Si11B16 at.% alloys. The alloys were quenched with linear velocity of cooper wheel surface from 22 to 38 m/s. We found a nonlinear dependence of local atomic ordering from linear velocity of cooling wheel. The average lateral density of ordered atomic clusters of 5 nm size changes from 4% to 8%. The amorphous alloy with metastable disordered structure with lower level of free energy is more stable against the external conditions. This approach can be used to determine the best technological parameters for preparing amorphous metallic alloy with metastable structure.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 265)

Pages:

569-574

Citation:

Online since:

September 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] W.K. Jun., R.H. Willens, P. Duwez, Non-crystalline Structure in Solidified Gold–Silicon Alloys, Nature, 187 (1960) 869-870.

DOI: 10.1038/187869b0

Google Scholar

[2] Y. Zhang, et al., Hydrogen storage characteristics of the nanocrystalline and amorphous Mg–Nd–Ni–Cu-based alloys prepared by melt spinning, Int J Hydr. Energy, 39 (2014) 3790-3798.

DOI: 10.1016/j.ijhydene.2013.12.139

Google Scholar

[3] T. Xu, et al., Synthesis of Fe75Cr5(PBC)20 bulk metallic glasses with a combination of desired merits using industrial ferro-alloys without high-purity materials, J. Alloys and Comp, 699 (2017) 92-97.

DOI: 10.1016/j.jallcom.2016.12.322

Google Scholar

[4] Q. Wang, et al., The atomic-scale mechanism for the enhanced glass-forming-ability of a Cu-Zr based bulk metallic glass with minor element additions Sci Rep., 11 (2014) 4: 4648.

DOI: 10.1038/srep04648

Google Scholar

[5] Y. Han, et al., Softening and good ductility for nanocrystal-dispersed amorphous Fe–Co–B alloys with high saturation magnetization above 1. 7 T, J. Alloys and Comp., 657 (2016) 237-245.

DOI: 10.1016/j.jallcom.2015.10.066

Google Scholar

[6] E.V. Pustovalov, et al., Structure relaxation and crystallization of the CoW-CoNiW-NiW electrodeposited alloys Nanosc. Res. Lett., 9 (2014) 1-8.

DOI: 10.1186/1556-276x-9-66

Google Scholar

[7] E.B. Modin, et al., Atomic structure and crystallization processes of amorphous (Co, Ni)–P metallic alloy, J. Alloys and Comp., 641 (2015) 139-143.

DOI: 10.1016/j.jallcom.2015.04.060

Google Scholar

[8] F. Wan, et al., Surface crystallization and magnetic properties of FeCuSiBNbMo melt-spun nanocrystalline alloys, Mater. Res. Bull., (2017).

Google Scholar

[9] Y. Zhang, et al., Hydrogen storage characteristics of the nanocrystalline and amorphous Mg–Nd–Ni–Cu-based alloys prepared by melt spinning, Int. J Hydr. Energy, 39 (2014) 3790-3798.

DOI: 10.1016/j.ijhydene.2013.12.139

Google Scholar

[10] Information on http: /www. gatan. com/resources/scripts.

Google Scholar

[11] D.R.G. Mitchell, T.C. Petersen, RDFTools: A software tool for quantifying short-range ordering in amorphous materials, Micr. Res. Tech0,. 75 (2012) 153-163.

DOI: 10.1002/jemt.21038

Google Scholar

[12] MATLAB R2016b, The MathWorks Inc., Natick, MA, (2016).

Google Scholar

[13] G.Y. Fan and J.M. Cowley, Auto-correlation analysis of high resolution electron micrographs of near-amorphous thin films, Ultramic., 17 (1985) 345-356.

DOI: 10.1016/0304-3991(85)90201-3

Google Scholar

[14] S. Pfleiderer, D. G. A. Ball, I and R. C. Bailey Auto: a computer program for the determination of the two-dimensional autocorrelation function of digital images, Computers & Geosci., 19 (1993) 825-829.

DOI: 10.1016/0098-3004(93)90053-8

Google Scholar

[15] X.J. Liu, et al., Atomistic mechanism for nanocrystallization of metallic glasses Acta Mat., 56 (2008) 2760-2769.

DOI: 10.1016/j.actamat.2008.02.019

Google Scholar