Pseudocapacitive Behavior of Ni(OH)2/NiO Hierarchical Structures Grown on Carbon Fiber Paper

Article Preview

Abstract:

Transition metal oxides and hydroxides, specifically nickel (Ni), are currently being studied for their pseudocapacitive behaviors due to their high specific capacitance and efficient redox reactions. In this study, nickel oxide (NiO) and nickel hydroxide [Ni (OH)2] hierarchical structures were grown on carbon fiber paper via hydrothermal treatment for a binder-free electrode for pseudocapacitor. Cyclic voltammetry was employed to determine the influence of annealing temperature on the specific capacitance of NiO-and/or Ni (OH)2 – carbon fiber electrodes. The NiO – carbon fiber electrode annealed at 400°C exhibited the highest specific capacitance of about 1993.12 F/g at a scan rate of 2 mV/s. The carbon fibers were fully covered by NiO platelets which possibly provide efficient transport of electrolyte, enhancing the capacitance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

177-181

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] K. Wang, L. Li and H. Zhang: Int. J. Electrochem. Sci. Vol. 8 (2013), pp.4785-4791.

Google Scholar

[2] B. Vidyhyadharan, N.K.M. Zain, I.I. Misnon, R.A. Aziz, J. Ismail, M.M. Yusoff and R. Jose: Journal of Alloys and Compounds. Vol. 610 (2014), pp.143-150.

DOI: 10.1016/j.jallcom.2014.04.211

Google Scholar

[3] R.R. Salunkhe, B.P. Bastakoti, C-T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C-C. Hu and Y. Yamauchi: Chem. Eur. J. Vol. 20 (2014), pp.3084-3088.

DOI: 10.1002/chem.201303652

Google Scholar

[4] M. Huang, F. Li, F. Dong, Y. X. Zhang and L. L Zhang: J. Mater. Chem. A. Vol. 3 (2015), pp.21380-21423.

Google Scholar

[5] R.B. Rakhi, W. Chen, D. Cha and H.N. Alshareef: Nano Lett. Vol. 12 (2012), pp.2559-2667.

Google Scholar

[6] L. Zhang, Q. Ding, Y. Huang, H. Gu, Y-E. Miao and T. Liu: Appl. Mater. Interfaces. Vol. 7 (2015), pp.22669-22677.

Google Scholar

[7] E.J. Lee and J.H. Bang: Materials Letters. Vol. 105 (2013), pp.28-31.

Google Scholar

[8] X. Xiong, D. Ding, D. Chen, G. Waller, Y. Bu, Z. Wang and M. Liu: Nano Energy. Vol. 11 (2015), pp.154-161.

Google Scholar

[9] S. Cheng, L. Yang, Y. Liu, W. Lin, L. Huang, D. Chen, C.P. Wong and M. Liu: J. Mater. Chem. A. Vol. 1 (2013), pp.7709-7716.

Google Scholar

[10] L. Zhang and H. Gong: Sci. Rep. Vol. 5 (2015), pp.1-11.

Google Scholar

[11] J. Yan, Z.J. Fan, W. Sun, G.Q. Ning, T. Wei, Q. Zhang, R.F. Zhang, L.J. Zhi and F. Wei: Adv. Funct. Mater. Vol. 22 (2012), pp.2632-2641.

DOI: 10.1002/adfm.201102839

Google Scholar

[12] H. Jiang, J. Ma and C. Li: Adv. Mater. Vol. 24 (2012), pp.4197-4202.

Google Scholar