Characterization of Silica Extracted from Rice Husk Ash Wastes Doped by Tin Dioxide for Wave Guide Material

Article Preview

Abstract:

A series of experiments is made to produce silica, mixing with tin dioxide (SnO2), and characterizing for application of waveguide device. Silica xerogels (SX) are prepared from raw materials derived from rice husks ash (RHA), which abundant in South East Sulawesi. The synthesis conditions have been optimized to obtain the ash of rice husks with the maximum silica content. SnO2 are prepared from a commercial powder. The ceramic waveguide materials are produced by mixing SX and SnO2 with various composition. The mixtures are molded to form the rectangular shape of 20 mm, 40 mm, and 5 mm in size. The samples will be sintered at different level of temperatures (from 300°C to 1200°C) by using microwave heating system as well as electric furnace. The microstructural of sintered samples were characterized on the basis of the experimental data obtained using densification measurement method (Archimedes method), crystallization (X-ray diffraction, XRD), microstructure (Scanning electron microscope, SEM). Optical and related properties such as the functional groups, structure, and absoption were characterized by using FTIR, Infrared and Raman Spectroscopy and absorption (UVVis). The permittivity and permeability will be calculated from S-parameters determined by using Vector Network Analyzer (VNA). Characterization results are presented in this paper and the others are will be published in another separated papers. Furthermore, the relationship between properties with SnO2 content and sintering temperature is also studied.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

148-152

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Dimitriev, Y., M. Bursukova, E. Kashchieva, V. Chernev and B. Samuneva. 1997, Journal of Sol- Gel Science and Technology, 8, p.937 – 940.

DOI: 10.1023/a:1018341131107

Google Scholar

[2] Zaitoun, M. A., T. Kim, and C. T. Lin, 1998, J. Phys. Chem. B, 102.

Google Scholar

[3] Pellegri, N., E. J. C. Dawnay, and E.M. Yeatman, 1998, Journal of Sol-Gel Science and Technology, 13, p.783.

DOI: 10.1023/a:1008630030373

Google Scholar

[4] Xia, Z., G. Li, D. Chen, H. Xiao, 2009, Materials Letters, 63, p.2600 – 2602.

Google Scholar

[5] Devi, S., and M. Srivastva, 2011. International Journal of Electronics Engineering, 3, p.51.

Google Scholar

[6] Hunt, A. J., in: L. L Hench, J.K. West, 1992. Chemical processing of advance material, Willey, New York, p.341.

Google Scholar

[7] Venkateswara Rao, A., P.B. Wagh, D. Haranath, P.P. Risbud, S.D. Kumbhare, 1999, Ceramics International, 25, p.505 – 509.

DOI: 10.1016/s0272-8842(97)00085-0

Google Scholar

[8] Kalapathy, U, A. Proctor, J. Shultz, 2002, Bio Resource Technology, 85, p.285 – 289.

Google Scholar

[9] Matori, K.A., M. M. Haslinawati, Z.A. Wahab, H.A.A. Sidek, T.K. Ban, W.A.W.A.K. Ghani, 2009, MASAUM Journal of Basic and Applied Sciences, 1, p.512 – 515.

Google Scholar

[10] I. N. Sudiana, S. Mitsudo, M.Z. Firihu, L. Aba, L. O. Ngkoimani, M.W. Arsana, H. Aripin, AIP Conference Proceedings, 1801(1), 040003 (2017); DOI : 10. 1063/1. 4973092.

DOI: 10.1063/1.4973092

Google Scholar

[11] I. N. Sudiana, S. Mitsudo, T. Nishiwaki, P. E. Susilowati, L. Lestari, M. Z. Firihu, H. Aripin, Journal of Physics: Conference Series, Vol. 739 No. 1, (2016) 012059.

DOI: 10.1088/1742-6596/739/1/012059

Google Scholar

[12] Aripin, H., S. Mitsudo, I.N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sabchevski, 2011, Journal of Infrared, Millimeter and Terahertz Waves, 32, p.867 – 876.

DOI: 10.1007/s10762-011-9797-2

Google Scholar

[13] H. Aripin, S. Mitsudo, E. S. Prima, I. N. Sudiana, S. Tani, K. Sako, Y. Fujii, T. Saito, T. Idehara, S. Sano, B. Sunendar, S. Sabchevski, J. of Infrared, Millimeter, and Terahertz waves, DOI 10. 1007/s10762-012-9925-7 (2012).

DOI: 10.1007/s10762-012-9925-7

Google Scholar

[14] I. N. Sudiana, S. Mitsudo, M. Z. Firihu, H. Aripin, Materials Science Forum , Vo. 872, 2016, pp.114-117.

DOI: 10.4028/www.scientific.net/msf.872.114

Google Scholar

[15] I. N. Sudiana, S. Mitsudo, M. Z. Firihu, Contemporary Engineering Sciences, Vol. 9, 2016, no. 12, 595-602.

Google Scholar

[16] H. Aripin, S. Mitsudo, I.N. Sudiana, T. Saito, S. Sabchevski, , Transactions of the Indian Ceramic Society, DOI: 10. 1080/0371750X. 2014. 980850 (2015).

Google Scholar

[17] I. N. Sudiana, S. Mitsudo, K. Sako, S. Inagaki, L. O. Ngkoimani, I. Usman, H. Aripin, AIP Conference Proceedings, 1719, 030014 (2016); doi: 10. 1063/1. 4943709.

DOI: 10.1063/1.4943709

Google Scholar

[18] M. Zamrun F., I. N. Sudiana, S. Mitsudo, Contemporary Engineering Sciences, Vol. 9, 2016, 5, 237 – 247.

Google Scholar

[19] I. N. Sudiana, Ryo Ito, S. Inagaki, K. Kuwayama, K. Sako, Seitaro Mitsudo, J. of Infrared, Millimeter, and Terahertz Waves, DOI 10. 1007/s10762-013-0011-6 (2013).

DOI: 10.1007/s10762-013-0011-6

Google Scholar

[20] S. Mitsudo, S. Inagaki, I.N. Sudiana, K. Kuwayama, Advanced Materials Research, 789, pp.279-282 (2013).

DOI: 10.4028/www.scientific.net/amr.789.279

Google Scholar

[21] S. Mitsudo, K. Sako, S. Tani, and I. N. Sudiana, High Power Pulsed Sub-Millimeter Wave Sintering Zirconia Ceramics, 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz) 2011, Oct 2-7, 2011, Hyatt Regency Houston, USA.

DOI: 10.1109/irmmw-thz.2011.6105135

Google Scholar

[22] Y. L. Tian, D. L. Johnson, M. E. Brodwin, Vol. 1, Ceramic Powder Science II B. Edited by G. L. Messing, E. R. Fuller, and H. Hausner. American Ceramic Society Inc., Westerville, OH, (1988).

Google Scholar

[23] C. Larsson, D. Sjoberg, and L. Elmkvist, 2010. Waveguide Measurements of The Permittivity and Permeability At Temperatures Up To 1000◦C . Lund University, Sweden.

DOI: 10.1109/tim.2011.2122150

Google Scholar