Dilute Acid Hydrolysis of Lignocellulose Fiber Sago Pretreated by Microwave Heating

Article Preview

Abstract:

The dilute acid hydrolysis of fiber sago with cloride acid was undertaken in a microwave reactor system. The glucose and morphology analysis were performed after cellulose and hemi-cellulose hydrolysis. The hydrothermal condition was setup in a microwave furnace at microwave power of 800 W for 30-60 min. Scanning electron microscopy (SEM) analysis were utilized to confirm the microstructural changes after pretreatment. The results show that by using microwave energy, hydrolysis is not only can work in lower temperature than that of hot plate hydrolysis but also give a higher yield. There also found that the pretreatment optimum conditions for fiber sago hydrolysis is at 5% chloride acid solution and applied microwave power of 800 watt for 45 minutes. At that condition, there was found that sugar degradation occurred at acid concentrations greater than 30.15%. Microstructure evaluation from SEM photos shows that the disruption of the structure of the cell wall increases the accessibility of cellulase to lignocellulose. This results suggest that microwave technology is appropriate technology for holocellulose (cellulose and hemi-cellulose) hydrolysis.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

135-140

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Quan, V.A., 2006, Degradation of the Solar Cell Dye Sentisizer N7L9 Preliminary Building of Dye-Sentisized Solar Cell, Thesis Roskild University, Denmark.

Google Scholar

[2] https: /www. ecotricity. co. uk/our-green-energy/energy-independence/the-end-of-fossil-fuels.

Google Scholar

[3] Khairunnisah., Marniati, S., dan Elida M. (2014).

Google Scholar

[4] Kim K. H, Hong J. (2001) Supercritical CO2 pretreatment of lignocel-lulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2): 139–144.

DOI: 10.1016/s0960-8524(00)00147-4

Google Scholar

[5] Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46 (3): 299–321.

DOI: 10.1016/j.supflu.2008.01.018

Google Scholar

[6] Morais ARC, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115(1): 3–27.

DOI: 10.1021/cr500330z

Google Scholar

[7] I.N. Sudiana, Ryo Ito, S. Inagaki, K. Kuwayama, K. Sako, S. Mitsudo, Densification of Alumina Ceramics Sintered by Using Sub-millimeter Wave Gyrotron, J. Infrared, Millimeter, and Terahertz Waves. 34 (2013), 627-638.

DOI: 10.1007/s10762-013-0011-6

Google Scholar

[8] W. H. Sutton, Microwave processing of Ceramic Materials, Microwave Solutions for Ceramic Engineers, American Ceramic Society, (2005), 35-65.

Google Scholar

[9] I. N. Sudiana, S. Mitsudo, M. Z. Firihu, Effect of Initial Green Samples on Mechanical Properties of Alumina Ceramic , Contemporary Engineering Sciences, Vol. 9, 2016, no. 12, 595-602.

DOI: 10.12988/ces.2016.6431

Google Scholar

[10] I N Sudiana, S. Mitsudo, M. Z. Firihu, H. Aripin, Effect of High-Frequency Microwave on Micro Hardness of Alumina Ceramic, Material Science Forum , Vo. 872, 2016, pp.114-117.

DOI: 10.4028/www.scientific.net/msf.872.114

Google Scholar

[11] M. Z. Firihu, I.N. Sudiana, Properties of 2. 45 GHz microwave sintered SiO2 from rice husk ash and Al2O3, ARPN Journal of Engineering and Applied Sciences   Vol. 12  No. 19, 2016, pp.11595-11598.

Google Scholar

[12] I. N. Sudiana, S. Mitsudo, T. Nishiwaki, P. E. Susilowati, L. Lestari, M. Z. Firihu, H. Aripin, Synthesis and Characterization of Microwave on Sintered Silica Xerogel Produced from Rice Husk Ash, Journal of Physics: Conference Series Vol. 739 No. 1, (2016).

DOI: 10.1088/1742-6596/739/1/012059

Google Scholar

[13] H. Aripin, S. Mitsudo, I. N. Sudiana, N. Jumsiah, I. Rahmatia, B. Sunendar, L. Nurdiwijayanto, S. Mitsudo, S. Sabchevski, Preparation of Porous Ceramic with Controllable Additive and Firing Temperature, Advanced Materials Research, Vol. 277 (2011).

DOI: 10.4028/www.scientific.net/amr.277.151

Google Scholar

[14] H. Aripin, S. Mitsudo, I.N. Sudiana, T. Saito, S. Sabchevski, Structure Formation of a Double Sintered Nanocrystalline Silica Xerogel Converted From Sago Waste Ash, Transactions of the Indian Ceramic Society, DOI: 10. 1080/0371750X. 2014. 980850 (2015).

DOI: 10.1080/0371750x.2014.980850

Google Scholar

[15] I.N. Sudiana, S. Mitsudo, K. Sako, S. Inagaki, L. O. Ngkoimani, I. Usman, H. Aripin, The microwave effects on the properties of alumina at high frequencies of microwave sintering, American Institute of Physics (AIP) Conference Proceeding, 1719, 030014 (2016).

DOI: 10.1063/1.4943709

Google Scholar

[16] S. Mitsudo, S. Inagaki, I.N. Sudiana, K. Kuwayama, Grain Growth in Millimeter Wave Sintered Alumina Ceramics , Advanced Materials Research, Vol. 789 (2013), pp.279-282.

DOI: 10.4028/www.scientific.net/amr.789.279

Google Scholar

[17] M. Zamrun F., I. N. Sudiana, S. Mitsudo, Microwaves Enhanced Sintering Mechanisms in Alumina Ceramic Sintering Experiments, Contemporary Engineering Sciences, Vol. 9, 2016, 5, 237 – 247.

DOI: 10.12988/ces.2016.615

Google Scholar

[18] I.N. Sudiana, S. Mitsudo, T. Nishiwaki, P. E. Susilowati, L. Lestari, M Zamrun Firihu, H. Aripin, Effect of Microwave Radiation on the Properties of Sintered Oxide Ceramics, Contemporary Engineering Sciences, Vol. 8 No. 34, (2015), 1607-1615.

DOI: 10.12988/ces.2015.511303

Google Scholar

[19] Wu, Y., Zhang, C., Liu, Y., Fu,Z., Dai, B. dan Yin, D. 2012. Biomass Char Sulfonic Acids (BC-SO3H)-Catalyzed Hydrolysis of Bamboo under Microwave Irradiation. Bioresources. 7(4), 5950-5959.

DOI: 10.15376/biores.7.4.5950-5959

Google Scholar

[20] M. Z. Firihu, I.N. Sudiana, 2. 45 GHz microwave drying of cocoa bean, ARPN Journal of Engineering and Applied Sciences   Vol. 12  No. 19, 2016, pp.11595-11598.

Google Scholar

[21] Kingston, H.M.S., H.J. Haswell, 1997. Microwave-Enhanced Chemistry: Fundamental, Sample Preparation, and Applications, American Chemical Society.

Google Scholar

[22] Taylor, M. Atri., S.S. dan Minhas, S. 2005. Developments in microwave chemistry. Evalueserve.

Google Scholar

[23] Chen W. H, Tu Y. J, Sheen H. K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88(8): 2726–2734.

DOI: 10.1016/j.apenergy.2011.02.027

Google Scholar

[24] Mais, U., Ali, R. E., Saddler, J. N., dan Shawn, D. M., (2002) Enhancing the Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling, Applied Biochemistry and Biotechnology, 98-100.

DOI: 10.1385/abab:98-100:1-9:815

Google Scholar

[25] Kamakura, M., Takuji, K., dan Isao (1982) Pretreatment of Lignocellulosic Wastes By Combination Of Irradiation And Mechanical Crushing, Biomass, 2: 299-308.

DOI: 10.1016/0144-4565(82)90015-4

Google Scholar

[26] Lu X, Xi B, Zhang Y, Angelidaki I (2011) Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol 102(17): 7937–7940.

DOI: 10.1016/j.biortech.2011.06.065

Google Scholar

[27] Keshwani DR, Cheng JJ (2010) Microwave‑based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Progr 26(3): 644–652.

DOI: 10.1002/btpr.371

Google Scholar

[28] Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Wang C, Jin S (2006) Microwave‑assisted alkali pre‑treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94(3): 437–442.

DOI: 10.1016/j.biosystemseng.2006.04.002

Google Scholar

[29] Ma H, Liu WW, Chen X, Wu YJ, Yu ZL (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour Technol 100(3): 1279–1284.

DOI: 10.1016/j.biortech.2008.08.045

Google Scholar

[30] Yusak, Y., 2004, Pengaruh Variasi Volume HCl 0, 5 N Dan Waktu Hidrolisa Terhadap Mutu Sirup Pada Pembuatan Sirup Glukosa Dari Pati Ubi Jalar (Ipomoea Babatas L, Sin Babatas Edulis Choisy), Jurnal Sains Kimia, 8(1): 22-25.

DOI: 10.56064/jps.v22i1.559

Google Scholar

[31] Devita, C., 2013, Perbandingan Metode Hidrolisis Menggunakan Enzim Amilase Dan Asam Dalam Pembuatan Sirup Glukosa Dari Pati Ubi Jalar Ungu (Ipomea batatas, L), Skripsi, Jurusan Kimia, Universitas Negeri Malang.

DOI: 10.32493/jitk.v4i1.3797

Google Scholar

[32] Fajar, R.D.P., Bambang, D.A., Yulianingsih, R., 2013, Pemanfaatan Iradiasi Gelombang Mikro Untuk Memaksimalkan Untuk Proses Pretreatment Degradasi Lignin Jerami Padi (Pada Produksi Bioetanol), Jurnal Bioproses Komoditas Tropis, 1(1).

Google Scholar

[33] Martin, D.K., 2010, Pengaruh Gelombang Mikro Pada Hidrolisis Asam Empulur Sagu Untuk Produksi Bioetanol, Sripsi, Institut Pertanian Bogor, Bogor.

DOI: 10.24961/j.tek.ind.pert.2017.27.1.33

Google Scholar

[34] Mokhammad, F.R., 2015, Kombinasi Iradiasi Gelombang Mikro dan Fermentasi Ekstraktif Guna Optimasi Produksi Bioetanol dari Jerami Padi, Prosiding Seminar Nasional Kimia Peran Ilmu Kimia dalam Pengembangan Industri Kimia yang Ramah Lingkungan, ISSN: 2338-2368.

DOI: 10.24817/jkk.v33i2.1844

Google Scholar

[35] Nibedita, S., Ghosh, S.K., Bannerjee, S., dan Aikat, K., 2012, Bioethanol production from agricultural wastes: An overview, Ranevable Energy 37: 17-19.

DOI: 10.1016/j.renene.2011.06.045

Google Scholar

[36] Zhenhu, H., dan Zhiyou, W., 2008, Enhancing Enzymatic Digestibility Of Switchgrass By Microwave-Assisted Alkali Pretreatment, Biochemical Engineering Journal, 38: 369-378.

DOI: 10.1016/j.bej.2007.08.001

Google Scholar