[1]
Quan, V.A., 2006, Degradation of the Solar Cell Dye Sentisizer N7L9 Preliminary Building of Dye-Sentisized Solar Cell, Thesis Roskild University, Denmark.
Google Scholar
[2]
https: /www. ecotricity. co. uk/our-green-energy/energy-independence/the-end-of-fossil-fuels.
Google Scholar
[3]
Khairunnisah., Marniati, S., dan Elida M. (2014).
Google Scholar
[4]
Kim K. H, Hong J. (2001) Supercritical CO2 pretreatment of lignocel-lulose enhances enzymatic cellulose hydrolysis. Bioresour Technol 77(2): 139–144.
DOI: 10.1016/s0960-8524(00)00147-4
Google Scholar
[5]
Schacht C, Zetzl C, Brunner G (2008) From plant materials to ethanol by means of supercritical fluid technology. J Supercrit Fluids 46 (3): 299–321.
DOI: 10.1016/j.supflu.2008.01.018
Google Scholar
[6]
Morais ARC, da Costa Lopes AM, Bogel-Łukasik R (2015) Carbon dioxide in biomass processing: contributions to the green biorefinery concept. Chem Rev 115(1): 3–27.
DOI: 10.1021/cr500330z
Google Scholar
[7]
I.N. Sudiana, Ryo Ito, S. Inagaki, K. Kuwayama, K. Sako, S. Mitsudo, Densification of Alumina Ceramics Sintered by Using Sub-millimeter Wave Gyrotron, J. Infrared, Millimeter, and Terahertz Waves. 34 (2013), 627-638.
DOI: 10.1007/s10762-013-0011-6
Google Scholar
[8]
W. H. Sutton, Microwave processing of Ceramic Materials, Microwave Solutions for Ceramic Engineers, American Ceramic Society, (2005), 35-65.
Google Scholar
[9]
I. N. Sudiana, S. Mitsudo, M. Z. Firihu, Effect of Initial Green Samples on Mechanical Properties of Alumina Ceramic , Contemporary Engineering Sciences, Vol. 9, 2016, no. 12, 595-602.
DOI: 10.12988/ces.2016.6431
Google Scholar
[10]
I N Sudiana, S. Mitsudo, M. Z. Firihu, H. Aripin, Effect of High-Frequency Microwave on Micro Hardness of Alumina Ceramic, Material Science Forum , Vo. 872, 2016, pp.114-117.
DOI: 10.4028/www.scientific.net/msf.872.114
Google Scholar
[11]
M. Z. Firihu, I.N. Sudiana, Properties of 2. 45 GHz microwave sintered SiO2 from rice husk ash and Al2O3, ARPN Journal of Engineering and Applied Sciences Vol. 12 No. 19, 2016, pp.11595-11598.
Google Scholar
[12]
I. N. Sudiana, S. Mitsudo, T. Nishiwaki, P. E. Susilowati, L. Lestari, M. Z. Firihu, H. Aripin, Synthesis and Characterization of Microwave on Sintered Silica Xerogel Produced from Rice Husk Ash, Journal of Physics: Conference Series Vol. 739 No. 1, (2016).
DOI: 10.1088/1742-6596/739/1/012059
Google Scholar
[13]
H. Aripin, S. Mitsudo, I. N. Sudiana, N. Jumsiah, I. Rahmatia, B. Sunendar, L. Nurdiwijayanto, S. Mitsudo, S. Sabchevski, Preparation of Porous Ceramic with Controllable Additive and Firing Temperature, Advanced Materials Research, Vol. 277 (2011).
DOI: 10.4028/www.scientific.net/amr.277.151
Google Scholar
[14]
H. Aripin, S. Mitsudo, I.N. Sudiana, T. Saito, S. Sabchevski, Structure Formation of a Double Sintered Nanocrystalline Silica Xerogel Converted From Sago Waste Ash, Transactions of the Indian Ceramic Society, DOI: 10. 1080/0371750X. 2014. 980850 (2015).
DOI: 10.1080/0371750x.2014.980850
Google Scholar
[15]
I.N. Sudiana, S. Mitsudo, K. Sako, S. Inagaki, L. O. Ngkoimani, I. Usman, H. Aripin, The microwave effects on the properties of alumina at high frequencies of microwave sintering, American Institute of Physics (AIP) Conference Proceeding, 1719, 030014 (2016).
DOI: 10.1063/1.4943709
Google Scholar
[16]
S. Mitsudo, S. Inagaki, I.N. Sudiana, K. Kuwayama, Grain Growth in Millimeter Wave Sintered Alumina Ceramics , Advanced Materials Research, Vol. 789 (2013), pp.279-282.
DOI: 10.4028/www.scientific.net/amr.789.279
Google Scholar
[17]
M. Zamrun F., I. N. Sudiana, S. Mitsudo, Microwaves Enhanced Sintering Mechanisms in Alumina Ceramic Sintering Experiments, Contemporary Engineering Sciences, Vol. 9, 2016, 5, 237 – 247.
DOI: 10.12988/ces.2016.615
Google Scholar
[18]
I.N. Sudiana, S. Mitsudo, T. Nishiwaki, P. E. Susilowati, L. Lestari, M Zamrun Firihu, H. Aripin, Effect of Microwave Radiation on the Properties of Sintered Oxide Ceramics, Contemporary Engineering Sciences, Vol. 8 No. 34, (2015), 1607-1615.
DOI: 10.12988/ces.2015.511303
Google Scholar
[19]
Wu, Y., Zhang, C., Liu, Y., Fu,Z., Dai, B. dan Yin, D. 2012. Biomass Char Sulfonic Acids (BC-SO3H)-Catalyzed Hydrolysis of Bamboo under Microwave Irradiation. Bioresources. 7(4), 5950-5959.
DOI: 10.15376/biores.7.4.5950-5959
Google Scholar
[20]
M. Z. Firihu, I.N. Sudiana, 2. 45 GHz microwave drying of cocoa bean, ARPN Journal of Engineering and Applied Sciences Vol. 12 No. 19, 2016, pp.11595-11598.
Google Scholar
[21]
Kingston, H.M.S., H.J. Haswell, 1997. Microwave-Enhanced Chemistry: Fundamental, Sample Preparation, and Applications, American Chemical Society.
Google Scholar
[22]
Taylor, M. Atri., S.S. dan Minhas, S. 2005. Developments in microwave chemistry. Evalueserve.
Google Scholar
[23]
Chen W. H, Tu Y. J, Sheen H. K (2011) Disruption of sugarcane bagasse lignocellulosic structure by means of dilute sulfuric acid pretreatment with microwave-assisted heating. Appl Energy 88(8): 2726–2734.
DOI: 10.1016/j.apenergy.2011.02.027
Google Scholar
[24]
Mais, U., Ali, R. E., Saddler, J. N., dan Shawn, D. M., (2002) Enhancing the Enzymatic Hydrolysis of Cellulosic Materials Using Simultaneous Ball Milling, Applied Biochemistry and Biotechnology, 98-100.
DOI: 10.1385/abab:98-100:1-9:815
Google Scholar
[25]
Kamakura, M., Takuji, K., dan Isao (1982) Pretreatment of Lignocellulosic Wastes By Combination Of Irradiation And Mechanical Crushing, Biomass, 2: 299-308.
DOI: 10.1016/0144-4565(82)90015-4
Google Scholar
[26]
Lu X, Xi B, Zhang Y, Angelidaki I (2011) Microwave pretreatment of rape straw for bioethanol production: focus on energy efficiency. Bioresour Technol 102(17): 7937–7940.
DOI: 10.1016/j.biortech.2011.06.065
Google Scholar
[27]
Keshwani DR, Cheng JJ (2010) Microwave‑based alkali pretreatment of switchgrass and coastal bermudagrass for bioethanol production. Biotechnol Progr 26(3): 644–652.
DOI: 10.1002/btpr.371
Google Scholar
[28]
Zhu S, Wu Y, Yu Z, Chen Q, Wu G, Yu F, Wang C, Jin S (2006) Microwave‑assisted alkali pre‑treatment of wheat straw and its enzymatic hydrolysis. Biosyst Eng 94(3): 437–442.
DOI: 10.1016/j.biosystemseng.2006.04.002
Google Scholar
[29]
Ma H, Liu WW, Chen X, Wu YJ, Yu ZL (2009) Enhanced enzymatic saccharification of rice straw by microwave pretreatment. Bioresour Technol 100(3): 1279–1284.
DOI: 10.1016/j.biortech.2008.08.045
Google Scholar
[30]
Yusak, Y., 2004, Pengaruh Variasi Volume HCl 0, 5 N Dan Waktu Hidrolisa Terhadap Mutu Sirup Pada Pembuatan Sirup Glukosa Dari Pati Ubi Jalar (Ipomoea Babatas L, Sin Babatas Edulis Choisy), Jurnal Sains Kimia, 8(1): 22-25.
DOI: 10.56064/jps.v22i1.559
Google Scholar
[31]
Devita, C., 2013, Perbandingan Metode Hidrolisis Menggunakan Enzim Amilase Dan Asam Dalam Pembuatan Sirup Glukosa Dari Pati Ubi Jalar Ungu (Ipomea batatas, L), Skripsi, Jurusan Kimia, Universitas Negeri Malang.
DOI: 10.32493/jitk.v4i1.3797
Google Scholar
[32]
Fajar, R.D.P., Bambang, D.A., Yulianingsih, R., 2013, Pemanfaatan Iradiasi Gelombang Mikro Untuk Memaksimalkan Untuk Proses Pretreatment Degradasi Lignin Jerami Padi (Pada Produksi Bioetanol), Jurnal Bioproses Komoditas Tropis, 1(1).
Google Scholar
[33]
Martin, D.K., 2010, Pengaruh Gelombang Mikro Pada Hidrolisis Asam Empulur Sagu Untuk Produksi Bioetanol, Sripsi, Institut Pertanian Bogor, Bogor.
DOI: 10.24961/j.tek.ind.pert.2017.27.1.33
Google Scholar
[34]
Mokhammad, F.R., 2015, Kombinasi Iradiasi Gelombang Mikro dan Fermentasi Ekstraktif Guna Optimasi Produksi Bioetanol dari Jerami Padi, Prosiding Seminar Nasional Kimia Peran Ilmu Kimia dalam Pengembangan Industri Kimia yang Ramah Lingkungan, ISSN: 2338-2368.
DOI: 10.24817/jkk.v33i2.1844
Google Scholar
[35]
Nibedita, S., Ghosh, S.K., Bannerjee, S., dan Aikat, K., 2012, Bioethanol production from agricultural wastes: An overview, Ranevable Energy 37: 17-19.
DOI: 10.1016/j.renene.2011.06.045
Google Scholar
[36]
Zhenhu, H., dan Zhiyou, W., 2008, Enhancing Enzymatic Digestibility Of Switchgrass By Microwave-Assisted Alkali Pretreatment, Biochemical Engineering Journal, 38: 369-378.
DOI: 10.1016/j.bej.2007.08.001
Google Scholar