The Influence of Nitrogen Doping Concentration on the Strain and Band Gap Energy of N-Doped Zinc Oxide Prepared Using Spray Coating Technique

Article Preview

Abstract:

N-ZnO thin layer is widely used in application of wastewater photo catalyst. N-ZnO thin films have been successfully deposited on glass substrate using spray coating technique at 450 °C with varying concentrations of N from Urea source. XRD test results showed that the N-ZnO has a polycrystalline structure with diffraction field (100), (002), (101) and (110). The presence of nitrogen atoms in the lattice of ZnO causes a shift in diffraction angle between 0.08o - 0.18o. N-ZnO thin layer showed the occurrence of tensile strain. Surface morphology of N-ZnO is shaped like mine (like root). All samples have band gap energies lower than that of ZnO and the smallest is sample N6 with Eg = 3.249 eV. The presence of nitrogen atom increases surface roughness and decreases band gap energy.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

141-147

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Sutanto, S. Wibowo, I. Nurhasanah, E. Hidayanto, H. Hadiyanto, Ag doped ZnO thin films synthesized by spray coating technique for Methylene blue photodegradation under UV irradiation, International Journal of Chemical Engineering, (2016).

DOI: 10.1155/2016/6195326

Google Scholar

[2] A. Behzadnia, M. Montazer, M. M. Rad, Simultaneous sonosynthesis and sonofabrication of N-doped ZnO/TiO2 core–shell nanocomposite on wool fabric: Introducing various properties specially nano photo bleaching, Ultrasonics Sonochemistry, 27 (2015).

DOI: 10.1016/j.ultsonch.2015.04.017

Google Scholar

[3] S. Wibowo, H. Sutanto, Preparation and characterization of double layer thin films ZnO/ZnO: Ag for methylene blue photodegradation, AIP Conference Proceedings, 1710 (2016), 4941515.

DOI: 10.1063/1.4941515

Google Scholar

[4] I. M. P. Silva, G. Byzynski, C. Ribeiroc, E. Longo, Different dye degradation mechanisms for ZnO and ZnO doped with N (ZnO: N), Journal of Molecular Catalysis A: Chemical, 417 (2016) 89–100.

DOI: 10.1016/j.molcata.2016.02.027

Google Scholar

[5] J. Tian, L. Chen, Y. Yin, X. Wang, P. Wu, Photocatalyst of TiO2/ZnO nano composit film, Surface & Coating Technology, 2004 (2009), 205-214.

Google Scholar

[6] T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Preparation and characterization of ZnO/TiO2 films obtained by sol-gel method, Journal of Non-Crystalline Solids, 375 (2011), 2840-2845.

DOI: 10.1016/j.jnoncrysol.2011.03.019

Google Scholar

[7] N. Salah, A. Hameed, M. Aslam, M. S. Abdel-wahab, S. S. Babkair, F.S. Bahabri, Flow controlled fabrication of N doped ZnO thin films and estimation of their performance for sunlight photocatalytic decontamination of water, Chemical Engineering Journal, 291 (2016).

DOI: 10.1016/j.cej.2016.01.111

Google Scholar

[8] W. Xue-wen, L. Zhou, F. Li, ZnO disks loaded with reduced Graphene oxide for the photodegradation of methylene blue, New Carbon Materials, 28(6) (2013), 408–413.

DOI: 10.1016/s1872-5805(13)60090-6

Google Scholar

[9] M. B. Akin, M. Oner, Photodegradation of methylene blue with sphere-like ZnO particles prepared via aqueous solution, Ceramics International, 39 (2013), 9759–9762.

DOI: 10.1016/j.ceramint.2013.05.024

Google Scholar

[10] H. Sutanto, I. Nurhasanah, E. Hidayanto, S. Wibowo, Hadiyanto, Synthesis and characterization of ZnO: TiO2 nano composites thin films deposited on glass substrate by sol-gel spray coating technique, AIP Conference Proceedings, 1699 (2015).

DOI: 10.1063/1.4938320

Google Scholar

[11] R. Chauhan, K. Ashavani, P. C. Ram, Synthesis and characterization of Silver doped ZnO nanoparticles, Journal of Solar Research Library, 2 (2010), 378-385.

Google Scholar

[12] S. Das, S. Patra, J. P. Kar, A. Roy, A. Ray, J. M. Myoung, Origin of p-type conductivity for N-doped ZnO nanostructure synthesized by MOCVD method, Materials Letters, 161 (2015), 701–704.

DOI: 10.1016/j.matlet.2015.09.075

Google Scholar

[13] H. Lu, P. Zhou, H. Liu, L. Zhang, Y. Yu, Y. Li, Z. Wang, Effects of Nitrogen and Oxygen partial pressure on the structural and optical properties of ZnO: N thin films prepared by magnetron sputtering, Materials Letters, 165 (2016), 123–126.

DOI: 10.1016/j.matlet.2015.11.105

Google Scholar

[14] B. M. Rajbongshi, A. Ramchiary, S.K. Samdarshi, Influence of N-Doping on photocatalytic activity of ZnO nano particles under visible light irradiation, Materials Letters, 134 (2014), 111–114.

DOI: 10.1016/j.matlet.2014.07.073

Google Scholar

[15] C. Wu, Facile one-step synthesis of N-doped ZnO micropolyhedrons for efficient photocatalytic degradation of formaldehyde under visible-light irradiation, Applied Surface Science, 319 (2014), 237–243.

DOI: 10.1016/j.apsusc.2014.04.217

Google Scholar

[16] E. S. Tuzemen, K. Kara, S. Elagoz, D. K. Takci, I. Altuntas, R. Esen, Structural and electrical properties of nitrogen-doped ZnO thin films, Applied Surface Science, 318 (2014), 157–163.

DOI: 10.1016/j.apsusc.2014.02.118

Google Scholar

[17] R. Sen, S. Das, K. Das, Microstructural characterization of nanosized Ceria powders by X-ray diffraction analysis, Metallurgical and Materials Transactions A, 42A (2011), 1409-1417.

DOI: 10.1007/s11661-010-0463-4

Google Scholar

[18] I. Nurhasanah, H. Sutanto, R. Futikhaningtyas, Optical properties of Zn-doped CeO2 nanoparticles as function of Zn content, Advanced Materials Research, 896 (2014), 108-111.

DOI: 10.4028/www.scientific.net/amr.896.108

Google Scholar