Influence of Indium and Antimony Additions on Mechanical Properties and Microstructure of Sn-3.0Ag-0.5Cu Lead Free Solder Alloys

Article Preview

Abstract:

In this research, we investigated the influence of indium and antimony additions on the microstructure, mechanical and thermal properties of Sn-3.0Ag-0.5Cu lead free solder alloys. The results revealed that the addition of 0.5 wt.%InSb into SAC305 solder alloys resulted to a reduced melting temperature by 3.8 °C and IMCs phases formed new Ag3(Sn,In) and SnSb in the Sn-rich matrix with a decreased grain size of 28%. These phases improved the mechanical properties of solder alloys. In addition, the mechanical properties of SAC305 solder alloys increased by adding 0.5 wt.%InSb, resulting in an increase of ultimate tensile strength of 24%, but the percent elongation decreased to 45.8%. Furthermore, the Vickers microhardness slightly increased of the SAC305 solder alloys.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

196-200

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. Abtew and G. Selvaduray: Mater. Sci. Eng. Vol. 27 (2000), p.95.

Google Scholar

[2] G.Y. Li, B.L. Chen, X.Q. Shi, S.C.K. Wong and Z.F. Wang: Thin Solid Films Vol. 504 (2006), p.422.

Google Scholar

[3] K. Kanlayasiri, M. Mongkolwongrojn and T. Ariga: J. Alloy Compd. Vol. 485 (2009), p.225.

Google Scholar

[4] L.C. Tsao, S.Y. Chang, C.I. Lee, W.H. Sun and C.H. Huang: Mater. Design Vol. 32 (2011), p.4720.

Google Scholar

[5] S. Chantaramanee, S. Wisutmethangoon, L. Sikong and T. Plookphol: J. Mater Sci: Mater Electron. Vol. 24 (2013), p.3701.

Google Scholar

[6] Q. Li, N. Ma, Y, Lei, J. Lin, H. Fu and J. Gu: J. Electron. Mater. Vol. 45 (2016), p.5800.

Google Scholar

[7] M. He and V.L. Acoff: J. Electron. Mater. Vol. 35 (2006), p. (2098).

Google Scholar

[8] M. Sobhy and A.M. El-Tather: Mater. Design Vol. 64 (2013), p.607.

Google Scholar

[9] H.T. Lee and Y.F. Chen: J. Electron. Mater. Vol. 38 (2009), p.2148.

Google Scholar

[10] H. Fallahi, M.S. Nurulakmal, A.F. Arezodar and J. Abdullah: Mat. Sci. Eng. A. Vol. 553 (2012), p.22.

Google Scholar

[11] A.A. El-Daly, A.E. Hammad, A. Fawzy and D.A. Nasrallh: Mater. Design Vol. 43 (2013), p.40.

Google Scholar

[12] D.X. Luo, S.B. Xue and Z.Q. Li: J. Mater Sci: Mater Electron. Vol. 25 (2014), p.3566.

Google Scholar

[13] B.L. Chen and G.Y. Li: Thin Solid Films Vol. 462 (2004), p.395.

Google Scholar

[14] A.A. El-Daly and A.E. Hammad: J. Alloy Compd. Vol. 509 (2011), p.8554.

Google Scholar

[15] L.F. Li, Y.K. Cheng, G.L. Xu, E.Z. Wang, Z.H. Zhang and H. Wang: Mater. Design Vol. 64 (2014), p.15.

Google Scholar

[16] B. Kim, C.W. Lee, D. Lee and N. Kang: J. Alloy Compd. Vol. 592 (2014), p.207.

Google Scholar

[17] C. Zhang, S.D. Liu, G.T. Qian, J. Zhou and F. Xue: Trans. Nonferrous Met. Soc. China Vol. 24 (2014), p.184.

Google Scholar

[18] D.Q. Yu, J. Zhao and L. Wang: J. Alloy Compd. Vol. 376 (2004), p.170.

Google Scholar