Structural Properties of Mg2(Si,Ge,Sn)-Based Thermoelectric Materials Prepared by Induction Melting Method

Article Preview

Abstract:

We report on preparation of Mg2(Si,Ge,Sn)-based thermoelectric materials by a direct induction melting method in Al2O3 crucible. A 40 g ingot of Mg2Si0.8Sn0.1Ge0.1 was prepared after addition to the batch 10 wt% of Mg excess. Evolution of crystal structure of the induction melted sample upon annealing and spark plasma sintering (SPS) was tracked by room-temperature X-ray diffraction (XRD) and scanning electron microscopy (SEM) methods. An evidence for the formation of Mg2(Si,Ge,Sn) solid solution was obtained from the crystal lattice parameter of this phase which was found to be larger than that of undoped Mg2Si. XRD and SEM indicated that alongside with the main phase of the Mg2(Si,Ge,Sn) solid solution, an impurity phase of Mg2Sn exists in the sample. Amount of the Mg2Sn impurity phase is significantly reduced in spark plasma sintered sample.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

207-211

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J.R. Sootsman, D.Y. Chung and M.G. Kanatzidis: Angew. Chem. Int. Ed. Vol. 48 (2009), p.8616.

Google Scholar

[2] S. Chen and Z. Ren: Mater. Today Vol. 16 (2013), p.387.

Google Scholar

[3] L. -D. Zhao, J. He, D. Berardan, Y. Lin, J. -F. Li, C. -W. Nan and N. Dragoe: Energy Environ. Sci. Vol. 7 (2014), p.2900.

Google Scholar

[4] A.P. Goncalves and C. Godart: Eur. Phys. J B Vol. 87 (2014), p.42.

Google Scholar

[5] W. Liu, Q. Jie, H.S. Kim and Z. Ren: Acta Mater. Vol. 87 (2015), p.357.

Google Scholar

[6] T. Zhu, C. Fu, H. Xie, Y. Liu and X. Zhao: Adv. Energy Mater. Vol. 5 (2015), p.1500588.

Google Scholar

[7] M.I. Fedorov and G.N. Isachenko: Jpn. J. Appl. Phys. Vol. 54 (2015), p. 07JA05.

Google Scholar

[8] R. Chetty, A. Bali and R.C. Mallik: J. Mater. Chem. C Vol. 3 (2015), p.12364.

Google Scholar

[9] K. Biswas, J. He, I.D. Blum, C. -I Wu, T.P. Hogan, D.N. Seidman, V.P. Dravid and M.G. Kanatzidis: Nature. Vol. 489 (2012), p.414.

DOI: 10.1038/nature11439

Google Scholar

[10] A.D. LaLonde, Y. Pei, H. Wang and G.J. Snyder: Mater. Today Vol. 14 (2011), p.526.

Google Scholar

[11] P. -C. Wei, C. -C. Yang, J. -L. Chen, et al.: Appl. Phys. Lett. Vol. 107 (2015), p.123902.

Google Scholar

[12] T. Yi, M.N. Abdusalyamova, F. Makhmudov and S.M. Kauzlarich: J. Mater. Chem. Vol. 22 (2012), p.14378.

Google Scholar

[13] S.K. Plachkova and I.A. Avramova: Phys. Stat. Sol. A Vol. 184 (2001), p.195.

Google Scholar

[14] H. Liu, X. Shi, F. Xu, L. Zhang, W. Zhang, L. Chen, Q. Li, C. Uher, T. Day and G.J. Snyder: Nat. Mater. Vol. 11 (2012), p.422.

Google Scholar

[15] V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, A. Yu. Samunin and M.V. Vedernikov: Phys. Rev. B Vol. 74 (2006), p.045207.

Google Scholar

[16] J. Li, J. Sui, Y. Pei, C. Barreteau, D. Berardan, N. Dragoe, W. Cai, J. He and L. -D. Zhao: Energy Environ. Sci. Vol. 5 (2012), p.8543.

DOI: 10.1039/c2ee22622g

Google Scholar

[17] G. Rogl, A. Grytsiv, P. Rogl, E. Bauer, M. Hochenhofer, R. Anbalagan, R. C. Mallik and E. Schafler: Acta Mater. Vol. 76 (2014), p.434.

DOI: 10.1016/j.actamat.2014.05.051

Google Scholar

[18] M. Rull-Bravo, A. Moure, J. F. Fernandez and M. Martın-Gonzalez: Nat. Mater. Vol. 11 (2012), p.620.

Google Scholar

[19] V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov and A.T. Burkov: J. Mater. Chem. A Vol. 5 (2017), p.3541.

Google Scholar

[20] G. Joshi, R. He, M. Engber, G. Samsonidze, T. Pantha, E. Dahal, K. Dahal, J. Yang, Y. Lan, B. Kozinsky and Z. Ren: Energy Environ. Sci. Vol. 7 (2014), p.4070.

DOI: 10.1039/c4ee02180k

Google Scholar

[21] C. Fu, T. Zhu, Y. Liu, H. Xie and X. Zhao: Energy Environ. Sci. Vol. 8 (2015), p.216.

Google Scholar

[22] C. Fu, S. Bai, Y. Liu, Y. Tang, L. Chen, X. Zhao and T. Zhu: Nat. Comm. Vol. 6 (2015), p.8144.

Google Scholar

[23] X. Zhang, Y. Wang, Y. Yan, C. Wang, G. Zhang, Z. Cheng, F. Ren, H. Deng and J. Zhang: Sci. Rep. Vol. 6 (2016), p.33120.

Google Scholar

[24] W. Liu, X. Tang, H. Li, J. Sharp, X. Zhou and C. Uher: Chem. Mater. Vol. 23 (2011), p.5256.

Google Scholar

[25] X.J. Tan, W. Liu, H.J. Liu, J. Shi, X.F. Tang and C. Uher: Phys. Rev. B Vol. 85 (2012), p.205212.

Google Scholar

[26] G. Jiang, J. He, T. Zhu, C. Fu , X. Liu , L. Hu and X. Zhao: Adv. Funct. Mater. Vol. 24 (2014), p.3776.

Google Scholar

[27] P. Bellanger, S. Gorsse, G. Bernard-Granger, C. Navone, A. Redjaimia and S. Vives: Acta Mater. Vol. 95 (2015), p.102.

DOI: 10.1016/j.actamat.2015.05.010

Google Scholar

[28] A.U. Khan, N. Vlachos and Th. Kyratsi: Scripta Mater. Vol. 69 (2013), p.606.

Google Scholar

[29] Q. Zhang, J. He, T.J. Zhu, S.N. Zhang, X.B. Zhao and T.M. Tritt: Appl. Phys. Lett. Vol. 93 (2008), p.102109.

Google Scholar

[30] S. -M. Choi, K. -H. Kim, I. -H. Kim, S. -U. Kim and W. -S. Seo: Current Appl. Phys. Vol. 11 (2011), p. S388.

Google Scholar

[31] W. Liu, Q. Zhang, K. Yin, H. Chi, X. Zhou, X. Tang and C. Uher: J. Solid State Chem. Vol. 203 (2013), p.333.

Google Scholar

[32] H. Itahara, T. Yamada, S. -Y. Oh, R. Asahi, H. Imagawa and H. Yamane: Chem. Commun. Vol. 50 (2014), p.4315.

DOI: 10.1039/c4cc01330a

Google Scholar

[33] D. Berthebaud and F. Gascoin: J. Solid State Chem. Vol. 202 (2013), p.61.

Google Scholar

[34] M. Ioannou, K. Chrissafis, E. Pavlidou, F. Gascoin and Th. Kyratsi: J. Solid State Chem. Vol. 197 (2013), p.172.

DOI: 10.1016/j.jssc.2012.08.051

Google Scholar

[35] E. Godlewska, K. Mars, R. Mania and S. Zimowski: Intermetallics Vol. 19 (2011), p. (1983).

DOI: 10.1016/j.intermet.2011.06.013

Google Scholar

[36] A. Delgado, S. Cordova, I. Lopez, D. Nemir and E. Shafirovich: J. Alloys Comp. Vol. 658 (2016), p.422.

Google Scholar

[37] Q. Zhang, J. He, X.B. Zhao, S.N. Zhang, T.J. Zhu, H. Yin and T.M. Tritt: J. Phys D: Appl. Phys. Vol. 41 (2008), p.185103.

Google Scholar

[38] J. de Boor, T. Dasgupta, H. Kolb, C. Compere, K. Kelm and E. Mueller: Acta Mater. Vol. 77 (2014), p.68.

DOI: 10.1016/j.actamat.2014.05.041

Google Scholar

[39] Q. Zhang, Y. Zheng, X. Su, K. Yin, X. Tang and C. Uher: Scripta Mater. Vol. 96 (2015), p.1.

Google Scholar

[40] H. Gao, T. Zhu, X. Liu, L. Chen and X. Zhao: J. Mater. Chem. Vol. 21 (2011), p.5933.

Google Scholar

[41] T. Yi, S. Chen, S. Li, H. Yang, S. Bux, Z. Bian, N.A. Katcho, A. Shakouri, N. Mingo, J. -P. Fleurial, N.D. Browning and S.M. Kauzlarich: J. Mater. Chem. Vol. 22 (2012), p.24805.

DOI: 10.1039/c2jm35257e

Google Scholar

[42] S. Chen, X. Zhang, W. Fan, T. Yi, D.V. Quach, S. Bux, Q. Meng, S.M. Kauzlarich and Z.A. Munir: J. Alloys Comp. Vol. 625 (2015), p.251.

DOI: 10.1016/j.jallcom.2014.11.073

Google Scholar

[43] W. Wunderlich, Y. Suzuki, N. Gibo, T. Ohkuma, M. Al-Abandi, M. Sato, A.U. Khan and T. Mori: Inorganics Vol. 2 (2014), p.351.

DOI: 10.3390/inorganics2020351

Google Scholar

[44] A. Chernatynskiy and S.R. Phillpot: Phys. Rev. B Vol. 92 (2015), p.064303.

Google Scholar