Vacuum Sintering Process in Metal Injection Molding for 17-4 PH Stainless Steel as Material for Orthodontic Bracket

Article Preview

Abstract:

Malocclusion is one of the common problems encountered in the teeth and mouth of Indonesian people. This country is also confronted with problems that the bracket have to been imported from abroad. The purpose of this study is to produce national orthodontic bracket by metal injection molding (MIM) process in Indonesia, particularly by using vacuum sintering for 17-4 PH stainless steel because it is a material commonly used for orthodontic bracket. Sintering conducted at four different temperatures, at 1320 °C, 1340 °C, 1360 °C, and 1380 °C. The results showed that there are inclusions in sintering products. The relative density increases with increasing temperature sintering because the area of porosity are reduced. In addition, the results of sintering at 1360 °C has optimal hardness, which is amounted to 395 HV and higher than commercial bracket.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 266)

Pages:

231-237

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G. Sandeep and G. Sonia, Pattern of Dental Malocclusion in Orthodontic Patients in Rwanda: a Retrospective Hospital Based Study, Rwanda Medical Journal, vol. 69, no. 4, p.13–18, (2012).

Google Scholar

[2] M. K. Alam, A to Z Orthodontics: Removable Appliance, vol. 10. Kota Bharu: Universiti Sains Malaysia, (2012).

Google Scholar

[3] Menteri Kesehatan Republik Indonesia, Keputusan Menteri Kesehatan Republik Indonesia no. 1415/MENKES/SK/X/2005 tentang Kebijakan Pelayanan Dokter Gigi Keluarga. Indonesia, (2005).

DOI: 10.24167/shk.v2i1.809

Google Scholar

[4] M. F. Sfondrini, V. Cacciafesta, E. Maffia, S. Massironi, A. Scribante, G. Alberti, R. Biesuz, and C. Klersy, Chromium Release from New Stainless Steel, Recycled and Nickel-free Orthodontic Brackets, Angle Orthodontist, vol. 79, p.361–367, (2008).

DOI: 10.2319/042108-223.1

Google Scholar

[5] S. Supriadi, T. W. Sitanggang, B. Irawan, B. Suharno, G. Kiswanto, and T. Prasetyadi, Orthodontics Bracket Fabrication Using the Investment Casting Process, International Journal of Technology, vol. 4, p.613–621, (2015).

DOI: 10.14716/ijtech.v6i4.1862

Google Scholar

[6] L. Y. Min, K. A. Khalil, and H. Baryun, Rheological, Mechanical, and Corrosive Properties of Injection Molded 17-4 PH Stainless Steel, Transacstions of Nonferrous Metal Society of China, vol. 14, p.934–939, (2004).

Google Scholar

[7] H. Ye, X. Y. Liu, and H. Hong, Sintering of 17-4 PH Stainless Steel Feedstock for Metal Injection Molding, Materials Letters, vol. 62, p.3334–3336, (2008).

DOI: 10.1016/j.matlet.2008.03.027

Google Scholar

[8] H. -J. Sung, T. K. Ha, S. Ahn, and Y. W. Chang, Powder Injection Molding of a 17-4 PH Stainless Steel and the Effect of Sintering Temperature on Its Microstructure and Mechanical Properties, Journal of Materials Processing Technology, vol. 130–131, p.321–327, (2002).

DOI: 10.1016/s0924-0136(02)00739-2

Google Scholar

[9] Y. Wu, R. M. German, D. Blaine, B. Marx, and C. Schlaefer, Effects of Residual Carbon Content on Sintering Shrinkage, Microstructure and Mechanical Properties of Injection Molded 17-4 PH Stainless Steel, Journal of Materials Science, vol. 7, p.3573–3583, (2002).

DOI: 10.1023/a:1016532418920

Google Scholar

[10] C. Chang, P. Chen, and K. Hwang, Enhanced Mechanical Properties of Injection Molded 17-4PH Stainless Steel through Reduction of Silica Particles by Graphite Additions, Materials Transactions, vol. 51, no. 12, p.2243–2250, (2010).

DOI: 10.2320/matertrans.m2010209

Google Scholar

[11] A. Szewczyk-Nykiel, M. Hebda, M. Nykiel, T. Pieczonka, and J. Kazior, Influence of Sintering Atmosphere on Densification Development of 17-4 PH Stainless Steel Powder, in Euro PM2012 Congress and Exhibition, 2012, p.1–7.

DOI: 10.1179/1743290112y.0000000015

Google Scholar

[12] S. Supriadi and E. R. Baek, Sintering of Stainless Steel Nanopowders for Micro-Component Part Applications, Applied Mechanics and Materials, vol. 493, p.697–702, (2014).

DOI: 10.4028/www.scientific.net/amm.493.697

Google Scholar

[13] A. Islam, H. N. Hansen, N. M. Esteves, and T. T. Rasmussen, Effects of Holding Pressure and Process Temperatures on the Mechanical Properties of Moulded Metallic Parts, in Annual Technical Conference (ANTEC 2013, 2013, vol. 1, p.483–487.

Google Scholar

[14] W. Fang, X. B. He, R. J. Zhang, S. Di Yang, and X. H. Qu, Evolution of Stresses in Metal Injection Molding Parts during Sintering, Transactions of Nonferrous Metals Society of China, vol. 25, p.552–558, (2015).

DOI: 10.1016/s1003-6326(15)63637-8

Google Scholar

[15] K. T. Oh, S. U. Choo, K. M. Kim, and K. N. Kim, A Stainless Steel Bracket for Orthodontic Application, European Journal of Orthodontics, vol. 27, no. 3, p.237–244, (2005).

DOI: 10.1093/ejo/cji005

Google Scholar