[1]
H.G. Craighead, Nanoelectromechanical Systems, Science. 290 (2000) 1532-1535. doi: 10. 1126/science. 290. 5496. 1532.
DOI: 10.1126/science.290.5496.1532
Google Scholar
[2]
X.M. Henry Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature 421 (2003) 496. http: /dx. doi. org/10. 1038/421496a.
DOI: 10.1038/421496a
Google Scholar
[3]
V.V. Deshpande, H. -Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches, Nano Lett. 6 (2006) 1092-1095. doi: 10. 1021/nl052513f.
DOI: 10.1021/nl052513f
Google Scholar
[4]
B. Bourlon, D.C. Glattli, C. Miko, L. Forró, A. Bachtold, Carbon nanotube based bearing for rotational motions, Nano Lett. 4 (2004) 709-712. doi: 10. 1021/nl035217g.
DOI: 10.1021/nl035217g
Google Scholar
[5]
M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, et al., Bending and buckling of carbon nanotubes under large strain., Nature 389 (1997) 582-584. doi: 10. 1038/39282.
DOI: 10.1038/39282
Google Scholar
[6]
O. Lourie, D. Cox, H. Wagner, Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1638-1641. doi: 10. 1103/PhysRevLett. 81. 1638.
DOI: 10.1103/physrevlett.81.1638
Google Scholar
[7]
Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Phys. Lett. Sect. A Gen. At. Solid State Phys. 357 (2006) 130-135. doi: 10. 1016/j. physleta. 2006. 04. 026.
DOI: 10.1016/j.physleta.2006.04.026
Google Scholar
[8]
M. Mohammadimehr, A.R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, Q. Han, Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225 (2011).
DOI: 10.1177/2041298310392861
Google Scholar
[9]
O. Rahmani, S.S. Asemani, S.A.H. Hosseini, Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory, J. Comput. Theor. Nanosci. 12 (2015) 3162-3170. doi: 10. 1166/jctn. 2015. 4095.
DOI: 10.1166/jctn.2015.4095
Google Scholar
[10]
O. Rahmani, S.A.H. Hosseini, M. Parhizkari, Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: an analytical approach, Microsyst. Technol. (2016) 1-13. doi: 10. 1007/s00542-016-3127-5.
DOI: 10.1007/s00542-016-3127-5
Google Scholar
[11]
C.Y. Wang, X.H. Li, Y. Luo, Circumferential nonlocal effect on the buckling and vibration of nanotubes, Phys. Lett. Sect. A Gen. At. Solid State Phys. 380 (2016) 1455-1461. doi: 10. 1016/j. physleta. 2016. 02. 023.
DOI: 10.1016/j.physleta.2016.02.023
Google Scholar
[12]
M. Akbarzadeh Khorshidi, M. Shaat, A. Abdelkefi, M. Shariati, Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity, Appl. Phys. A. 123 (2017) 62. doi: 10. 1007/s00339-016-0658-7.
DOI: 10.1007/s00339-016-0658-7
Google Scholar
[13]
F. Khajueenejad, J. Ghanbari, Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model, Mater. Res. Express. 2 (2015) 105009. doi: 10. 1088/2053-1591/2/10/105009.
DOI: 10.1088/2053-1591/2/10/105009
Google Scholar
[14]
D. Karlicić, P. Kozić, R. Pavlović, Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations, J. Theor. Appl. Mech. (2015).
DOI: 10.15632/jtam-pl.53.1.217
Google Scholar
[15]
N.M.A. Krishnan, D. Ghosh, Buckling analysis of cylindrical thin-shells using strain gradient elasticity theory, Meccanica. 52 (2017) 1369-1379. doi: 10. 1007/s11012-016-0468-1.
DOI: 10.1007/s11012-016-0468-1
Google Scholar
[16]
Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 1-6. doi: 10. 1103/PhysRevB. 70. 205430.
DOI: 10.1103/physrevb.70.205430
Google Scholar
[17]
X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids. 53 (2005) 303-326. doi: 10. 1016/j. jmps. 2004. 08. 003.
DOI: 10.1016/j.jmps.2004.08.003
Google Scholar
[18]
R. Ansari, M. Mirnezhad, H. Rouhi, An efficient molecular mechanics model for the torsional buckling analysis of multi-walled silicon carbide nanotubes, Eur. Phys. J. Appl. Phys. 70 (2015) 10401. doi: 10. 1051/epjap/2015140395.
DOI: 10.1051/epjap/2015140395
Google Scholar
[19]
N. Challamel, M. Asce, M. Janev, T.M. Atanackovi, Buckling and Postbuckling of a Heavy Compressed Nanorod on Elastic Foundation, (2014). doi: 10. 1061/(ASCE)NM. 2153-5477. 0000124.
DOI: 10.1061/(asce)nm.2153-5477.0000124
Google Scholar
[20]
M. Lembo, Exact solutions for post-buckling deformations of nanorods, Acta Mech. 228 (2017) 2283-2298. doi: 10. 1007/s00707-017-1834-3.
DOI: 10.1007/s00707-017-1834-3
Google Scholar
[21]
A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710. doi: 10. 1063/1. 332803.
DOI: 10.1063/1.332803
Google Scholar
[22]
Ö. Civalek, Ç. Demir, B. Akgöz, Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory, Int. J. Eng. Appl. Sci. 1 (2009) 47-56.
Google Scholar
[23]
B. Akgöz, Ö. Civalek, Investigation of size effects on static response of single-walled carbon nanotubes based on strain gradient elasticity, Int. J. Comput. Methods. 9 (2012) 1240032. doi: 10. 1142/S0219876212400324.
DOI: 10.1142/s0219876212400324
Google Scholar
[24]
C. Li, T. -W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487-2499. doi: 10. 1016/S0020-7683(03)00056-8.
DOI: 10.1016/s0020-7683(03)00056-8
Google Scholar
[25]
S.S. Gupta, F.G. Bosco, R.C. Batra, Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration, Comput. Mater. Sci. 47 (2010).
DOI: 10.1016/j.commatsci.2009.12.007
Google Scholar