Buckling of Eccentrically Loaded Carbon Nanotubes

Article Preview

Abstract:

In the present study, buckling of eccentrically loaded nanobeams in which the load is not applied at the centroid of cross section, has been studied. Eringen’s Nonlocal Elasticity Theory has been used in the formulation of governing equation of motion of the nanobeam. Simply supported and free boundary conditions for nanobeam have been taken consideration. The effect of nonlocal parameter, eccentricity of the load, nanobeam length on the buckling deflection and critical buckling load on nanobeam have been investigated. Present results can be useful in the design of nano-structures.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

151-156

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.G. Craighead, Nanoelectromechanical Systems, Science. 290 (2000) 1532-1535. doi: 10. 1126/science. 290. 5496. 1532.

DOI: 10.1126/science.290.5496.1532

Google Scholar

[2] X.M. Henry Huang, C.A. Zorman, M. Mehregany, M.L. Roukes, Nanoelectromechanical systems: Nanodevice motion at microwave frequencies, Nature 421 (2003) 496. http: /dx. doi. org/10. 1038/421496a.

DOI: 10.1038/421496a

Google Scholar

[3] V.V. Deshpande, H. -Y. Chiu, H.W.C. Postma, C. Mikó, L. Forró, M. Bockrath, Carbon nanotube linear bearing nanoswitches, Nano Lett. 6 (2006) 1092-1095. doi: 10. 1021/nl052513f.

DOI: 10.1021/nl052513f

Google Scholar

[4] B. Bourlon, D.C. Glattli, C. Miko, L. Forró, A. Bachtold, Carbon nanotube based bearing for rotational motions, Nano Lett. 4 (2004) 709-712. doi: 10. 1021/nl035217g.

DOI: 10.1021/nl035217g

Google Scholar

[5] M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, et al., Bending and buckling of carbon nanotubes under large strain., Nature 389 (1997) 582-584. doi: 10. 1038/39282.

DOI: 10.1038/39282

Google Scholar

[6] O. Lourie, D. Cox, H. Wagner, Buckling and collapse of embedded carbon nanotubes, Phys. Rev. Lett. 81 (1998) 1638-1641. doi: 10. 1103/PhysRevLett. 81. 1638.

DOI: 10.1103/physrevlett.81.1638

Google Scholar

[7] Q. Wang, V.K. Varadan, S.T. Quek, Small scale effect on elastic buckling of carbon nanotubes with nonlocal continuum models, Phys. Lett. Sect. A Gen. At. Solid State Phys. 357 (2006) 130-135. doi: 10. 1016/j. physleta. 2006. 04. 026.

DOI: 10.1016/j.physleta.2006.04.026

Google Scholar

[8] M. Mohammadimehr, A.R. Saidi, A. Ghorbanpour Arani, A. Arefmanesh, Q. Han, Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory, Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 225 (2011).

DOI: 10.1177/2041298310392861

Google Scholar

[9] O. Rahmani, S.S. Asemani, S.A.H. Hosseini, Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory, J. Comput. Theor. Nanosci. 12 (2015) 3162-3170. doi: 10. 1166/jctn. 2015. 4095.

DOI: 10.1166/jctn.2015.4095

Google Scholar

[10] O. Rahmani, S.A.H. Hosseini, M. Parhizkari, Buckling of double functionally-graded nanobeam system under axial load based on nonlocal theory: an analytical approach, Microsyst. Technol. (2016) 1-13. doi: 10. 1007/s00542-016-3127-5.

DOI: 10.1007/s00542-016-3127-5

Google Scholar

[11] C.Y. Wang, X.H. Li, Y. Luo, Circumferential nonlocal effect on the buckling and vibration of nanotubes, Phys. Lett. Sect. A Gen. At. Solid State Phys. 380 (2016) 1455-1461. doi: 10. 1016/j. physleta. 2016. 02. 023.

DOI: 10.1016/j.physleta.2016.02.023

Google Scholar

[12] M. Akbarzadeh Khorshidi, M. Shaat, A. Abdelkefi, M. Shariati, Nonlocal modeling and buckling features of cracked nanobeams with von Karman nonlinearity, Appl. Phys. A. 123 (2017) 62. doi: 10. 1007/s00339-016-0658-7.

DOI: 10.1007/s00339-016-0658-7

Google Scholar

[13] F. Khajueenejad, J. Ghanbari, Internal length parameter and buckling analysis of carbon nanotubes using modified couple stress theory and Timoshenko beam model, Mater. Res. Express. 2 (2015) 105009. doi: 10. 1088/2053-1591/2/10/105009.

DOI: 10.1088/2053-1591/2/10/105009

Google Scholar

[14] D. Karlicić, P. Kozić, R. Pavlović, Flexural vibration and buckling analysis of single-walled carbon nanotubes using different gradient elasticity theories based on Reddy and Huu-Tai formulations, J. Theor. Appl. Mech. (2015).

DOI: 10.15632/jtam-pl.53.1.217

Google Scholar

[15] N.M.A. Krishnan, D. Ghosh, Buckling analysis of cylindrical thin-shells using strain gradient elasticity theory, Meccanica. 52 (2017) 1369-1379. doi: 10. 1007/s11012-016-0468-1.

DOI: 10.1007/s11012-016-0468-1

Google Scholar

[16] Y.Q. Zhang, G.R. Liu, J.S. Wang, Small-scale effects on buckling of multiwalled carbon nanotubes under axial compression, Phys. Rev. B - Condens. Matter Mater. Phys. 70 (2004) 1-6. doi: 10. 1103/PhysRevB. 70. 205430.

DOI: 10.1103/physrevb.70.205430

Google Scholar

[17] X.Q. He, S. Kitipornchai, K.M. Liew, Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction, J. Mech. Phys. Solids. 53 (2005) 303-326. doi: 10. 1016/j. jmps. 2004. 08. 003.

DOI: 10.1016/j.jmps.2004.08.003

Google Scholar

[18] R. Ansari, M. Mirnezhad, H. Rouhi, An efficient molecular mechanics model for the torsional buckling analysis of multi-walled silicon carbide nanotubes, Eur. Phys. J. Appl. Phys. 70 (2015) 10401. doi: 10. 1051/epjap/2015140395.

DOI: 10.1051/epjap/2015140395

Google Scholar

[19] N. Challamel, M. Asce, M. Janev, T.M. Atanackovi, Buckling and Postbuckling of a Heavy Compressed Nanorod on Elastic Foundation, (2014). doi: 10. 1061/(ASCE)NM. 2153-5477. 0000124.

DOI: 10.1061/(asce)nm.2153-5477.0000124

Google Scholar

[20] M. Lembo, Exact solutions for post-buckling deformations of nanorods, Acta Mech. 228 (2017) 2283-2298. doi: 10. 1007/s00707-017-1834-3.

DOI: 10.1007/s00707-017-1834-3

Google Scholar

[21] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, J. Appl. Phys. 54 (1983) 4703-4710. doi: 10. 1063/1. 332803.

DOI: 10.1063/1.332803

Google Scholar

[22] Ö. Civalek, Ç. Demir, B. Akgöz, Static analysis of single walled carbon nanotubes (SWCNT) based on Eringen's nonlocal elasticity theory, Int. J. Eng. Appl. Sci. 1 (2009) 47-56.

Google Scholar

[23] B. Akgöz, Ö. Civalek, Investigation of size effects on static response of single-walled carbon nanotubes based on strain gradient elasticity, Int. J. Comput. Methods. 9 (2012) 1240032. doi: 10. 1142/S0219876212400324.

DOI: 10.1142/s0219876212400324

Google Scholar

[24] C. Li, T. -W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struct. 40 (2003) 2487-2499. doi: 10. 1016/S0020-7683(03)00056-8.

DOI: 10.1016/s0020-7683(03)00056-8

Google Scholar

[25] S.S. Gupta, F.G. Bosco, R.C. Batra, Wall thickness and elastic moduli of single-walled carbon nanotubes from frequencies of axial, torsional and inextensional modes of vibration, Comput. Mater. Sci. 47 (2010).

DOI: 10.1016/j.commatsci.2009.12.007

Google Scholar