[1]
K.J.A. Brookes, Hardmetals and Other Hard Materials, EPMA International Carbide Data, 6th edition, London, Great Britain, (1996).
Google Scholar
[2]
J.D. Kennedy, Cemented chrome carbides, Prod. Engineer. 24 (1953) 154-157.
Google Scholar
[3]
V.G. Kayuk, V.A. Masljuk, A.D. Kostenko, Tribological properties of hard alloys based on chromium carbide, Powder Metall. Met. C+. 42 (2003) 257-261.
Google Scholar
[4]
S. Letunovits, M. Viljus, J. Pirso, Sliding wear of Cr3C2-Ni base cermets, Materials Science (Medžiagotyra) 8 (2002) 477–480.
DOI: 10.1016/j.triboint.2004.04.009
Google Scholar
[5]
V.G. Kayuk, V.A. Masljuk, A.I. Yuga, Production, mechanical and tribological properties of layered composite materials based on a chromium carbide alloy, Powder Metall. Met. C+. 42 (2003) 31-37.
Google Scholar
[6]
I. Hussainova, M. Antonov, Elevated temperature wear of chromium carbide based cermets Proc. Estonian Acad. Sci. Eng 9 (2003) 261-271.
DOI: 10.3176/eng.2003.4.04
Google Scholar
[7]
J. Pirso, M. Viljus, Structure formation of Cr3C2-based cermets during sintering, Proc. 2000 Powder Metall. World Congr., 12-16 November 2000, Kyoto, Japan, 1265-1268.
Google Scholar
[8]
L. Prakash, Fundamentals and General Applications of Hardmetals, in: Vinod K. Sarin (Editor), Comprehensive Hard Materials, Volume 1, Elsevier, Amsterdam, (2014).
Google Scholar
[9]
W.D. Kingery, Densification during Sintering in the Presence of a Liquid Phase, J. Applied Phys., 30 (1959) 301-306.
DOI: 10.1063/1.1735155
Google Scholar
[10]
M. Tokita, Mechanism of Spark Plasma Sintering, Sumitomo Coal Mining Company, Ltd., Kawasaki-shi Kanagawa, (1999).
Google Scholar
[11]
H.R. Lawn, E.R. Fuller, Equilibrium Penny-like Cracks in Indentation Fracture, J. Mater. Sci., 10 (1975) 2016-(2024).
DOI: 10.1007/bf00557479
Google Scholar