Peculiarities of Photovoltage Formation across p-n Junction under Illumination of Laser Radiation

Article Preview

Abstract:

Photovoltage formation across Si and GaAs p-n junctions exposed to laser radiation is experimentally investigated. When the photon energy is lower than semiconductor forbidden energy gap, the photovoltage is found to consist of two components, U=Uf+ Uph. The first one Uf is fast having polarity of thermoelectromotive force of hot carriers. The second one Uph is slow component of opposite polarity, and it is caused by electron-hole pair generation due to two-photon absorption. Uph was shown to decrease with the rise of radiation wavelength due to diminution of two-photon absorption coefficient with wavelength. Predominance of each separate component in the formation of the net photovoltage depends on both laser wavelength and intensity.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

167-171

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Polman, M. Knight, E.C. Garnett, B. Ehler, W.C. Sinke, Photovoltaic materials: Present efficiencies and future challenges, Science 352 (2016) aad4424-1 – aad4424-10.

DOI: 10.1126/science.aad4424

Google Scholar

[2] A. Blakers, N. Zin, K.R. McIntosh, K. Fong, High efficiency silicon solar cells, Energy Procedia 33 (2013) 1-10.

DOI: 10.1016/j.egypro.2013.05.033

Google Scholar

[3] J. Le Perchec, A. Lanterne, T. Michel, S. Gall, R. Monna, F. Torregrosa, L. Roux, 19. 3 % Efficiency on p-type silicon solar cells by pulsion® plasma-immersion implantation, Energy Procedia 33 (2013) 18-23.

DOI: 10.1016/j.egypro.2013.05.035

Google Scholar

[4] T.P. White, N.N. Lal, K.R. Catchpole, Tandem solar cells based on high-efficiency c-Si bottom cells: top cell requirements for >30% Efficiency, IEEE Journal of Photovoltaics 4 (2014) 208-214.

DOI: 10.1109/jphotov.2013.2283342

Google Scholar

[5] C. Battaglia, A. Cuevas, S. De Wolf, High-efficiency crystalline silicon solar cells: status and perspectives, Energy Environ. Sci. 9 (2016) 1552-1576.

DOI: 10.1039/c5ee03380b

Google Scholar

[6] M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, A.W.Y. Ho-Baillie, Solar cell efficiency tables (version 49), Prog. Photovolt: Res. Appl. 25 (2017) 3-13.

DOI: 10.1002/pip.2855

Google Scholar

[7] S. Ašmontas, J. Gradauskas, A. Sužiedelis, A. Šilėnas, E. Širmulis, V. Vaičikauskas, V. Vaičiūnas, O. Žalys, L. Fedorenko, L. Bulat, Photovoltage formation across GaAs p-n junction under illumination of intense laser radiation, Optical and Quantum Electronics 48 (2016).

DOI: 10.1007/s11082-016-0702-z

Google Scholar

[8] J. Gradauskas, E. Širmulis, S. Ašmontas, A. Sužiedėlis, Z. Dashevsky, V. Kasiyan, Peculiarities of high power infrared detection on narrow-gap semiconductor p-n junctions, Acta Phys. Pol. A 119 (2011) 237-240.

DOI: 10.12693/aphyspola.119.237

Google Scholar

[9] R.T. Ross, A.J. Nozik, Efficiency of hot carrier solar energy converters, J. Appl. Phys. 53 (1982) 3813-3818.

DOI: 10.1063/1.331124

Google Scholar

[10] L.C. Hirst, N.J. Ekins-Daukes, Fundamental losses in solar cells, Prog. Photovolt: Res. Appl. 19 (2011) 286-293.

DOI: 10.1002/pip.1024

Google Scholar

[11] J. Rodiere, L. Lombez, A. Le Corre, O. Durand, J.F. Guillemoles, Experimental evidence of hot carriers solar cell operation in multi-quantum wells heterostructures, Appl. Phys Lett. 106 (2015) 183901-1 – 183901-4.

DOI: 10.1063/1.4919901

Google Scholar

[12] D.E. Aspnes, A.A. Studna, Dielectric functions and optical parameters of Si, Ge, GaP, GaAs, GaSb, InP, InAs and InSb from 1. 5 to 6. 0 eV, Phys. Rev. B 27 (1983) 985-1009.

DOI: 10.1103/physrevb.27.985

Google Scholar

[13] J. Nelson, The physics of solar cells, London Imperial College Press, London, (2006).

Google Scholar

[14] S. Ašmontas, J. Gradauskas, D. Seliuta, E. Širmulis, Photoelectric properties of nonuniform semiconductors under infrared laser radiation, Proc. SPIE 4423 Nonresonant Laser-Matter Interaction (NLMI-10, M.N. Libenson, Ed. ) (2001) 18-27.

DOI: 10.1117/12.431223

Google Scholar

[15] A.D. Bristow, N. Rotenberg, H. M van Driel, Two-photon absorption and Kerr coeffcients of silicon for 850-2200 nm, Appl. Phys. Lett. 90 (2007) 191104-1 – 191104-3.

DOI: 10.1063/1.2737359

Google Scholar

[16] W. Spitzer, M.Y. Fan, Infrared absorption in n-type silicon, Phys. Rev. 108 (1957) 268-271.

Google Scholar

[17] A. Dargys, J. Kundrotas, Handbook on physical properties of Ge, Si, GaAs and InP, Science and Encyclopedia Publishers, Vilnius, (1994).

Google Scholar