Sliding Wear of Composite Stainless Steel Hardfacing under Room and Elevated Temperature

Article Preview

Abstract:

The present research focuses onto sliding wear of novel plasma transferred arc welded (PTAW) hardfacing with the stainless steel (DIN X3CrNiMo18-13-3) matrix, reinforced with WC/W2C, under the room and elevated temperature. The hardfacing was produced, applying the optimized set of parameters (current – 55 A, reciprocating speed – 1.0 mm/s, oscillation frequency – 0.6 Hz). The average reinforcement content was 29.3 ± 4.0 vol %. The reinforcement consisted of W2C and WC, while M7C3- and M23C6-type (M = Fe, Cr, Mo, W) carbides were the main phases in the matrix. Universal hardness and Young’s modulus were approximately 5.3 and 1.9 times higher, than those of the reference steel (DIN X2CrNiMo18-14-3). The sliding wear of the hardfacing was 4.9 times lower under 20 °C and 3.1 times lower under 300 °C, but 1.8 times higher under 500 °C than the wear of the reference steel. Galling was the wear mechanism of the hardfacing under 20 °C, scoring – under 300 °C and combination of scoring and binder extrusion – under 500 °C

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

195-200

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] V.E. Buchanan, Solidification and microstructural characterization of iron-chromium based coatings deposited by SMAW and electric arc spraying, Surf. Coat. Tech. 203 (2009) 3638-3646.

DOI: 10.1016/j.surfcoat.2009.05.051

Google Scholar

[2] F.N. Longo, Introduction to Processing and Design, in: J.R. Davis (Ed. ), Handbook of Thermal Spray Technology, ASM International, Materials Park, (2004) 105-107.

Google Scholar

[3] P. Kulu, R. Tarbe, A. Žikin, H. Sarjas, A. Surženkov, Abrasive wear resistance of recycled hardmetal reinforced thick coating, Key Eng. Mat. 527 (2013) 185-190.

DOI: 10.4028/www.scientific.net/kem.527.185

Google Scholar

[4] S.V. Nadkarni, Modern Arc Welding Technology, Oxford and IBH Publishing Co Pvt Ltd., New Delhi, (1996).

Google Scholar

[5] W. Wu, L.Y. Hwu, D.Y. Lin, J.L. Lee, The relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scripta Mater. 42 (2000) 1071-1076.

DOI: 10.1016/s1359-6462(00)00339-0

Google Scholar

[6] P.E. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol, G. Wood, Welding processes for wear resistant overlays, J. Manuf. Process. 16 (2014) 4-25.

DOI: 10.1016/j.jmapro.2013.06.011

Google Scholar

[7] A. Ye. Vainerman, M.H. Shorshorov, V.D. Vesselkov, V.S. Novossadov, Plasma Cladding of Metals, Mashinostroyeniye, Leningrad, 1969 (in Russian).

Google Scholar

[8] M. Morsy, E. El-Kashif, The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits, Weld. World. 58 (2014) 491-497.

DOI: 10.1007/s40194-014-0132-0

Google Scholar

[9] D.J. Kotecki, Hardfacing benefits maintenance and repair welding, Weld. J. 71 (1992) 51-53.

Google Scholar

[10] M.C.M. Farias, R.M. Souza, A. Sinatora, D.K. Tanaka, The influence of applied load, sliding velocity and martensitic transformation of the unlubricated sliding wear of austenitic stainless steels, Wear. 263 (2007) 773-781.

DOI: 10.1016/j.wear.2006.12.017

Google Scholar

[11] K. -L. Hsu, T.M. Ahn, D.A. Rigney, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear. 60 (1980) 13-37.

DOI: 10.1016/0043-1648(80)90247-1

Google Scholar

[12] S. Miskiewicz, Hitzebeständiger Stahlguß mit erhöhtem Verschleißwiderstand, in: H. Berns (Ed. ), Hartlegierungen und Hartverbundwerkstoffe, Springer-Verlag, Berlin/Heidelberg, (1998).

DOI: 10.1007/978-3-642-51505-7_15

Google Scholar

[13] M. Kaptanoglu, M. Eroglu, Microstructure and wear of iron-based hardfacings reinforced with in-situ synthesized TiB2 particles, Kovove Mater. 55 (2017) 123-131.

DOI: 10.4149/km_2017_2_123

Google Scholar

[14] V. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, D. Goljandin, Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon of stainless steel matrix, Wear. 328-329 (2015) 378-390.

DOI: 10.1016/j.wear.2015.02.063

Google Scholar

[15] L.M. Molchunova, S.F. Gniusov, S.N. Kul'kov, Study of the structure and phase composition of the hardmetal WC-GX120Mn12, Izv. Vuzov. Fizika 12 (2000), s. 20-s. 24 (in Russian).

Google Scholar

[16] Q. Li, Y. Lei, H. Fu, Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition, Surf. Coat. Tech. 239 (2014) 102-107.

DOI: 10.1016/j.surfcoat.2013.11.026

Google Scholar

[17] H. Zhang, Y. Zou, Z. Zou, C. Shi, Effects of chromium addition on microstructure and properties of TiC-VC reinforced Fe-based laser cladding coatings, J. Alloy Compd. 614 (2014) 107-112.

DOI: 10.1016/j.jallcom.2014.06.073

Google Scholar

[18] R. Bendikiene, A. Ciuplys, L. Kavaliauskiene, Preparation and wear behaviour of steel turning tools surfaced using the submerged arc welding technique, P. Est. Acad. Sci. 65 (2016) 117-122.

DOI: 10.3176/proc.2016.2.01

Google Scholar

[19] A. Surzhenkov, A. Vallikivi, V. Mikli, M. Viljus, T. Vilgo, P. Kulu, Wear resistant self-fluxing alloy based TiC-NiMo and Cr2C3-Ni hardmetal particles reinforced composite coatings, Proc. 2nd Int. Conf. Manufacturing Engineering & Management 2012, 5–7 of December 2012, Prešov, Slovak Republic, 33-36.

DOI: 10.3176/eng.2013.3.03

Google Scholar

[20] A. Surzhenkov, M. Antonov, D. Goljandin, P. Kulu, M. Viljus, R. Traksmaa, A. Mere, High-temperature erosion of Fe-based coatings reinforced with cermet particles, Surf. Eng. 32 (2016) 624-630.

DOI: 10.1080/02670844.2016.1145377

Google Scholar

[21] R. Bendikiene, A. Ciuplys, E. Pupelis, Research of possibilities to replace industrial wear plates by surfaced coatings using waste materials, Int. J. Surf. Sci. Eng. 10(4) (2016) 330-338.

DOI: 10.1504/ijsurfse.2016.077535

Google Scholar

[22] H. Rojacz, M. Varga, H. Kerber, H. Winkelmann, Processing and wear of cast MMCs with cemented carbide scrap, J. Mat. Process. Tech. 214 (2014) 1285-1292.

DOI: 10.1016/j.jmatprotec.2014.01.011

Google Scholar

[23] D. Lu, M. Gu, Z. Shi, Materials transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel, Trib. Lett. 6 (1999) 57-61.

Google Scholar

[24] A.F. Smith, The sliding wear of 316 stainless steel in air in the temperature range 20–500°C, Tribol. Int. 18 (1985) 35-43.

DOI: 10.1016/0301-679x(85)90007-6

Google Scholar