[1]
V.E. Buchanan, Solidification and microstructural characterization of iron-chromium based coatings deposited by SMAW and electric arc spraying, Surf. Coat. Tech. 203 (2009) 3638-3646.
DOI: 10.1016/j.surfcoat.2009.05.051
Google Scholar
[2]
F.N. Longo, Introduction to Processing and Design, in: J.R. Davis (Ed. ), Handbook of Thermal Spray Technology, ASM International, Materials Park, (2004) 105-107.
Google Scholar
[3]
P. Kulu, R. Tarbe, A. Žikin, H. Sarjas, A. Surženkov, Abrasive wear resistance of recycled hardmetal reinforced thick coating, Key Eng. Mat. 527 (2013) 185-190.
DOI: 10.4028/www.scientific.net/kem.527.185
Google Scholar
[4]
S.V. Nadkarni, Modern Arc Welding Technology, Oxford and IBH Publishing Co Pvt Ltd., New Delhi, (1996).
Google Scholar
[5]
W. Wu, L.Y. Hwu, D.Y. Lin, J.L. Lee, The relationship between alloying elements and retained austenite in martensitic stainless steel welds, Scripta Mater. 42 (2000) 1071-1076.
DOI: 10.1016/s1359-6462(00)00339-0
Google Scholar
[6]
P.E. Mendez, N. Barnes, K. Bell, S.D. Borle, S.S. Gajapathi, S.D. Guest, H. Izadi, A.K. Gol, G. Wood, Welding processes for wear resistant overlays, J. Manuf. Process. 16 (2014) 4-25.
DOI: 10.1016/j.jmapro.2013.06.011
Google Scholar
[7]
A. Ye. Vainerman, M.H. Shorshorov, V.D. Vesselkov, V.S. Novossadov, Plasma Cladding of Metals, Mashinostroyeniye, Leningrad, 1969 (in Russian).
Google Scholar
[8]
M. Morsy, E. El-Kashif, The effect of microstructure on high-stress abrasion resistance of Fe-Cr-C hardfacing deposits, Weld. World. 58 (2014) 491-497.
DOI: 10.1007/s40194-014-0132-0
Google Scholar
[9]
D.J. Kotecki, Hardfacing benefits maintenance and repair welding, Weld. J. 71 (1992) 51-53.
Google Scholar
[10]
M.C.M. Farias, R.M. Souza, A. Sinatora, D.K. Tanaka, The influence of applied load, sliding velocity and martensitic transformation of the unlubricated sliding wear of austenitic stainless steels, Wear. 263 (2007) 773-781.
DOI: 10.1016/j.wear.2006.12.017
Google Scholar
[11]
K. -L. Hsu, T.M. Ahn, D.A. Rigney, Friction, wear and microstructure of unlubricated austenitic stainless steels, Wear. 60 (1980) 13-37.
DOI: 10.1016/0043-1648(80)90247-1
Google Scholar
[12]
S. Miskiewicz, Hitzebeständiger Stahlguß mit erhöhtem Verschleißwiderstand, in: H. Berns (Ed. ), Hartlegierungen und Hartverbundwerkstoffe, Springer-Verlag, Berlin/Heidelberg, (1998).
DOI: 10.1007/978-3-642-51505-7_15
Google Scholar
[13]
M. Kaptanoglu, M. Eroglu, Microstructure and wear of iron-based hardfacings reinforced with in-situ synthesized TiB2 particles, Kovove Mater. 55 (2017) 123-131.
DOI: 10.4149/km_2017_2_123
Google Scholar
[14]
V. Jankauskas, M. Antonov, V. Varnauskas, R. Skirkus, D. Goljandin, Effect of WC grain size and content on low stress abrasive wear of manual arc welded hardfacings with low-carbon of stainless steel matrix, Wear. 328-329 (2015) 378-390.
DOI: 10.1016/j.wear.2015.02.063
Google Scholar
[15]
L.M. Molchunova, S.F. Gniusov, S.N. Kul'kov, Study of the structure and phase composition of the hardmetal WC-GX120Mn12, Izv. Vuzov. Fizika 12 (2000), s. 20-s. 24 (in Russian).
Google Scholar
[16]
Q. Li, Y. Lei, H. Fu, Laser cladding in-situ NbC particle reinforced Fe-based composite coatings with rare earth oxide addition, Surf. Coat. Tech. 239 (2014) 102-107.
DOI: 10.1016/j.surfcoat.2013.11.026
Google Scholar
[17]
H. Zhang, Y. Zou, Z. Zou, C. Shi, Effects of chromium addition on microstructure and properties of TiC-VC reinforced Fe-based laser cladding coatings, J. Alloy Compd. 614 (2014) 107-112.
DOI: 10.1016/j.jallcom.2014.06.073
Google Scholar
[18]
R. Bendikiene, A. Ciuplys, L. Kavaliauskiene, Preparation and wear behaviour of steel turning tools surfaced using the submerged arc welding technique, P. Est. Acad. Sci. 65 (2016) 117-122.
DOI: 10.3176/proc.2016.2.01
Google Scholar
[19]
A. Surzhenkov, A. Vallikivi, V. Mikli, M. Viljus, T. Vilgo, P. Kulu, Wear resistant self-fluxing alloy based TiC-NiMo and Cr2C3-Ni hardmetal particles reinforced composite coatings, Proc. 2nd Int. Conf. Manufacturing Engineering & Management 2012, 5–7 of December 2012, Prešov, Slovak Republic, 33-36.
DOI: 10.3176/eng.2013.3.03
Google Scholar
[20]
A. Surzhenkov, M. Antonov, D. Goljandin, P. Kulu, M. Viljus, R. Traksmaa, A. Mere, High-temperature erosion of Fe-based coatings reinforced with cermet particles, Surf. Eng. 32 (2016) 624-630.
DOI: 10.1080/02670844.2016.1145377
Google Scholar
[21]
R. Bendikiene, A. Ciuplys, E. Pupelis, Research of possibilities to replace industrial wear plates by surfaced coatings using waste materials, Int. J. Surf. Sci. Eng. 10(4) (2016) 330-338.
DOI: 10.1504/ijsurfse.2016.077535
Google Scholar
[22]
H. Rojacz, M. Varga, H. Kerber, H. Winkelmann, Processing and wear of cast MMCs with cemented carbide scrap, J. Mat. Process. Tech. 214 (2014) 1285-1292.
DOI: 10.1016/j.jmatprotec.2014.01.011
Google Scholar
[23]
D. Lu, M. Gu, Z. Shi, Materials transfer and formation of mechanically mixed layer in dry sliding wear of metal matrix composites against steel, Trib. Lett. 6 (1999) 57-61.
Google Scholar
[24]
A.F. Smith, The sliding wear of 316 stainless steel in air in the temperature range 20–500°C, Tribol. Int. 18 (1985) 35-43.
DOI: 10.1016/0301-679x(85)90007-6
Google Scholar