Wear Rate of Nanocrystalline Diamond Coating under High Temperature Sliding Conditions

Article Preview

Abstract:

The present study deals with the tribological behavior of nanocrystalline diamond (NCD) coatings at high temperature sliding conditions. The NCD coatings were grown by plasma enhanced chemical vapor deposition (PECVD) method on the hard metal (WC-Co) substrates. The friction and wear tests were performed on ball-on-disc tribometer using a high-temperature chamber with rotary drive. The tests were carried out at room temperature, 300, 450 and 600 °C. The scanning electron microscopy (SEM), optical microscopy, mechanical profilometry and Raman spectrometry were used for investigation of the morphology and chemical composition of the wear scars and pristine surface. The depth and width of the wear scars measured after the high temperature sliding tests are larger in comparison with room temperature tests. It was observed that the coefficient of friction (COF) increased with increasing temperature. The wear rate of NCD coatings tested at 300-450° C was about 10 times higher than that at room temperature. The mechanisms involved for these variations are discussed.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 267)

Pages:

219-223

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Pastewka, S. Moser, P. Gumbsch, M. Mosler, Anisotropic mechanical amorphization drives wear in diamond, Nature Materials 10 (2011) 34-38.

DOI: 10.1038/nmat2902

Google Scholar

[2] I. Reineck, M.E. Sjöstrand, Diamond coated cutting tools, International Journal of Refractory Metals and Hard Materials 14 (1996) 187-193.

DOI: 10.1016/0263-4368(96)83433-0

Google Scholar

[3] Y. Qiao, X. Sun, B. Xu, S. Ma, High temperature tribological behaviors of nano-diamond as oil additive, Journal of Central South University of Technology 12 (2005) 181-184.

DOI: 10.1007/s11771-005-0036-7

Google Scholar

[4] A.P. Semenov, M.M. Khrushchov, Influence of environment and temperature on tribological behavior of diamond and diamond-like coatings, Journal of Friction and Wear 31 (2010) 195-218.

DOI: 10.3103/s106836661002008x

Google Scholar

[5] S. Shimada, H. Tanaka, M. Higuchi, T. Yamaguchi, S. Honda, K. Obata, Thermo-chemical wear mechanism of diamond tool in machining of ferrous metals, CIRP Annals – Manufacturing Technology 53 (2004) 57-60.

DOI: 10.1016/s0007-8506(07)60644-1

Google Scholar

[6] R.A. Andrievskii, Silicon nitride: synthesis and properties, Russian Chemical Reviews 64 (1995) 291-308.

DOI: 10.1070/rc1995v064n04abeh000151

Google Scholar

[7] A.R. Krauss, O. Auciello, D.M. Gruen, A. Jayatiss, A. Sumant, J. Tucek, D.C. Mancini, N. Moldovan, A. Erdemir, D. Ersoy, M.N. Gardose, H.G. Busmann, E.M. Meyer, M.Q. Ding, Ultrananocrystalline diamond thin films for MEMS and moving mechanical assembly devices, Diamond and Related Materials 10 (2001).

DOI: 10.1016/s0925-9635(01)00385-5

Google Scholar

[8] M. Marton, T. Izak, M. Vesely, M. Vojs, M. Michalka, J. Bruncko, Effect of argon and substrate bias on diamond thin film surface morphology, Vacuum 82 (2008) 154-157.

DOI: 10.1016/j.vacuum.2007.07.008

Google Scholar

[9] A.C. Ferrari, J. Robertson, Resonant Raman spectroscopy of disordered, amorphous, and diamond like carbon, Physical Review B 64 (2001) 075414-1 – 075414-13.

Google Scholar

[10] V. Podgursky, A. Bogatov, V. Sedov, I. Sildos, A. Mere, M. Viljus, J.G. Buijnsters, V. Ralchenko, Growth dynamics of nanocrystalline diamond films produced by microwave plasma enhanced chemical vapor deposition in methane/hydrogen/air mixture: Scaling analysis of surface morphology, Diamond & Related Materials 58 (2015).

DOI: 10.1016/j.diamond.2015.07.002

Google Scholar

[11] A. Bogatov, R. Traksmaa, V. Podgursky, Changes in surface morphology, deflection and wear of microcrystalline diamond film observed during sliding tests against Si3N4 balls, Key Engineering Materials 674 (2016) 145-151.

DOI: 10.4028/www.scientific.net/kem.674.145

Google Scholar

[12] A. Barata, L. Cunha, C. Moura, Characterisation of chromium nitride films produced by PVD techniques, Thin Solid Films 398-399 (2001) 501-506.

DOI: 10.1016/s0040-6090(01)01498-5

Google Scholar

[13] M. Uysal, H. Akbulut, M. Tokur, H. Algül, T. Çetinkaya, Structural and sliding wear properties of Ag/Graphene/WC hybrid nanocomposites produced by electroless Co-deposition, Journal of Alloys and Compounds 654 (2016) 185-195.

DOI: 10.1016/j.jallcom.2015.08.264

Google Scholar