Preparation of Indium Tin Oxide/Quaterthiophene Thin Film for Solution Processed Organic Device

Article Preview

Abstract:

Organic devices are advantageous in term of high carrier mobility, lightweight and flexibility. The solution processed method offers economic and efficient device fabrication in small laboratory scale. The α-quaterthiophene (α-4T) is an oligomer and a p-type organic semiconductor. In this study, pure α-4T and polylactide acid (PLA)/α-4T films were spin-coated on glass and indium tin oxide (ITO) substrates at low spin frequency. The hydrated films were left to dry at room temperature and later in vacuum oven. The α-4T microstructures changed when blended with the polymer. The roughness of the 180 nm ITO film was found to be 1 - 30 nm and the organic layer formed uneven thickness (max ~ 300 nm) thicker toward the edge. The preparation of spin coated organic thin film is the first step towards realizing solution processed organic device in electronic packaging.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

269-273

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C. Videlot-Ackermann, T. Isoshima, A. Yassar. T. Waha, H. Sasabe, D. Fichou, Third-order nonlinear optical properties of oligothiophene-based thin films investigated by electroabsorption spectroscopy: Influence of conjugated chain length and electron-withdrawing substituents. Synthetic Metals 156 (2006).

DOI: 10.1016/j.synthmet.2005.11.001

Google Scholar

[2] P. Wolfer, C. Muller, P. Smith, M. A. Baklar, N. Stingelin-Stutzmann, α-quaterthiophene-polyethylene blend: phase behaviour and electronic properties, Synthethic Metals 157 (2007) 827-833.

DOI: 10.1016/j.synthmet.2007.08.014

Google Scholar

[3] K. Nakano, H. Iino, T. Usui, J. Hanna, Bulk mobility of polycrystalline thin films of quaterthiophene derivatives, Appl. Phys. Lett. 98 (2011) 103302.

DOI: 10.1063/1.3555435

Google Scholar

[4] Y. Li, P. Sonar, S. P. Singh, M. S. Soh, M. van Meurs, J. Tan, Annealing-Free High Mobility Diketopyrrolopyrrole-Quaterthiophene Copolymer for Solution Processed Organic Thin Film Transistors, J. Am. Chem. Soc. 133 (2011) 2198-2204.

DOI: 10.1021/ja1085996

Google Scholar

[5] M. H. Hoang, T. T. Dao, N. T. T. Trang, P. H. N. Nguyen, T. T. Ngo, Synthesis of Gold Nanoparticles Capped with Quaterthiophene for Transistor and Resistor Memory Devices. J. of Chem. 2016 (2015) 1247175.

DOI: 10.1155/2016/1247175

Google Scholar

[6] S. Duhm, G. Heimel, I. Salzmann, H. Glowatzki, R. L. Johnson, A. Vollmer, J. P. Rabe, N. Koch, Orientation-dependent ionization energies and interface dipoles in ordered molecular assemblies, Nature Materials 7 (2008) 326-332.

DOI: 10.1038/nmat2119

Google Scholar

[7] A. Sassella, A. Borghesi, F. Meinardi, R. Tubino, M. Gurioli, C. Botta, W. Porzio, G. Barbarella, Optical properties of highly ordered quaterthiophene thin films grown by organic molecular-beam deposition, Phys. Rev. B 62 (2000) 11170-11176.

DOI: 10.1103/physrevb.62.11170

Google Scholar

[8] V. Papaefthimiou, S. Kennou, The electronic structure of the sputtered indium-tin oxide and a thin conjugated oligomer film interface, Surface Science 566-568 (2004) 497-501.

DOI: 10.1016/j.susc.2004.05.102

Google Scholar

[9] J. Y. Na, B. Kang, D. H. Sin, K. Cho, Y. D. Park, Understanding solidification of polythiophene thin films during spin coating : Effects of spin coating time and processing additives. Sci. Rep. 5 (2015) 13288.

DOI: 10.1038/srep13288

Google Scholar

[10] S. Z. N. Demon, N. A. Poad, S. H. Jamal, N. F. Rahmat, N. Bidin, Dispersion Of Multi-Walled Carbon Nanotubes Aggregates In Spin Coated Pla Thin Film, Buletin Optik 2 (2016) 1.

Google Scholar