Nanostructure of Al-ZnO Thin Films on ITO/Glass Substrate Prepared via Sol-Gel Spin Coating Process

Article Preview

Abstract:

Solar energy is probably the most important source of renewable energy available today. ZnO is a potential material for the fabrication solar cell. Zinc oxide (ZnO) nano-structure semiconductors have been recently gained much attention in the electronic and optical device applications. ZnO is a compound semiconductor, which has a high extention band gap (E= 3.37 eV) at room temperature (RT) with a Wurtzite crystal structure. In particular ZnO can be employed as the transparent conducting oxide (TCO) in solar cell applications due to its high productivity, non-toxic, low cost, and excellent electrical conductivity. In this study, aluminum doped ZnO (AZO) polycrystalline films have been fabricated on ITO/substrates via a sol-gel spin-coating method. The quantity of aluminum doping in the solution was 4.0 %. After synthesis, the films were pre-heated at 300°C for 25 min and after that the films were inserted in a Tub-furnace and post-annealing at 450°C to 750°C for 1 h. The microstructural and structural properties of AZO films were studied through X-ray diffraction (XRD), UV-Vis NIR and scanning electron microscope (SEM) analysis. The TCO applications of the transmittance of samples were also examined. The results showed that the annealing temperature does not seriously affect on the transmittance of AZO films over the visible range.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

279-283

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.H. Han, Y. Lee, M.R. Choi, S. Woo, S. Bae, B.H. Hong, J.H. Ahn, T.W. Lee, Extremely efficient flexible organic light-emitting diodes with modified graphene anode, Nature Photonics, 16 (2012) 105-10.

DOI: 10.1038/nphoton.2011.318

Google Scholar

[2] B.S. Ong, C. Li, Y. Li, Y. Wu, R. Loutfy, Stable, solution-processed, high-mobility ZnO thin-film transistors, Journal of the American Chemical Society. 129 (2007) 2750-1.

DOI: 10.1021/ja068876e

Google Scholar

[3] A. Kim, Y. Won, K. Woo, C. Kim, J. Moon, Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells, ACS nano. 7 (2013) 1081-91.

DOI: 10.1021/nn305491x

Google Scholar

[4] X. W. Sun, J. Z. Huang, J. X. Wang, Z. Xu, A ZnO nanorod inorganic/organic heterostructure light-emitting diode emitting at 342 nm, Nano Letters. 123 (2012)1219-23.

DOI: 10.1021/nl080340z

Google Scholar

[5] E. D. Gaspera, M. Bersani, M. Cittadini, M. Guglielmi, D. Pagani, R. Noriega, S. Mehra, A. Salleo, A. Martucci, Low-temperature processed Ga-doped ZnO coatings from colloidal inks, Journal of the American Chemical Society. 135(2013)3439-48.

DOI: 10.1021/ja307960z

Google Scholar

[6] W. J. Jeong, S. K. Kim, G. C. Park, Preparation and characteristic of ZnO thin film with high and low resistivity for an application of solar cell, Thin Solid Films. 506 (2006)180-3.

DOI: 10.1016/j.tsf.2005.08.213

Google Scholar

[7] S. Ishibashi, Y. Higuchi, Y. Ota, K. Nakamura, Low resistivity indium–tin oxide transparent conductive films. Effect of introducing H2O gas or H2 gas during direct current magnetron sputtering, Journal of Vacuum Science & Technology A. 8 (1990).

DOI: 10.1016/0042-207x(91)90990-z

Google Scholar

[8] P. L. Tat, K. Deraman, R. Hussin, W. Shamsuri, W. Nurulhuda, Z. Ibrahim, The Structural and Surface Morphology of Annealed ZnO Films, InAdvanced Materials Research. 903 (2014) 73-77.

DOI: 10.4028/www.scientific.net/amr.903.73

Google Scholar

[9] H. Noorik, K. B. Deraman, ZnO nanostructure: A review on their growth and structural properties by thermal evaporate and Chemical Vapor Deposition methods.

Google Scholar

[10] C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta, T. Hira, Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering, Thin Solid Films. 517 (2009) 3265-8.

DOI: 10.1016/j.tsf.2008.11.103

Google Scholar

[11] H. S. Kang, J. S. Kang, S. S. Pang, E. S. Shim, S. Y. Lee, Variation of light emitting properties of ZnO thin films depending on post-annealing temperature, Materials Science and Engineering: B. 120 (2003) 313-6.

DOI: 10.1016/s0921-5107(02)00730-4

Google Scholar

[12] S. W. Kuo, W. C. Chen, F. I. Lai, C. P. Cheng, H. C. Kuo, S. C. Wang, W. F. Hsieh, Effects of doping concentration and annealing temperature on properties of highly-oriented Al-doped ZnO films, Journal of crystal growth. 287(2006) 78-84.

DOI: 10.1016/j.jcrysgro.2005.10.047

Google Scholar

[13] S. S. Kumar, P. Venkateswarlu, V. R. Rao, G. N. Rao, Synthesis, characterization and optical properties of zinc oxide nanoparticles, International Nano Letters. 3 (2013)1-6.

DOI: 10.1186/2228-5326-3-30

Google Scholar

[14] J. H. Lee, K. H. Ko, B. O. Park, Electrical and optical properties of ZnO transparent conducting films by the sol–gel method, Journal of Crystal Growth. 247 (2003) 119-25.

DOI: 10.1016/s0022-0248(02)01907-3

Google Scholar

[15] K. E. Lee, M. Wang, E. J. Kim, S. H. Hahn, Structural, electrical and optical properties of sol–gel AZO thin films, Current Applied Physics. 9 (2009)683-7.

DOI: 10.1016/j.cap.2008.06.006

Google Scholar