The Influence of Growth Duration Process on Morphology and Electrical Properties of SnO2 Nanostructured Films

Article Preview

Abstract:

Tin oxide (SnO2) nanostructured thin film with different immersion times was prepared on zinc oxide (ZnO) seeded catalyst using immersion method. The immersion times were varied at 3.0, 3.5 and 4.0 hours. Field emission scanning electron microscopy (FESEM) and two point probes current-voltage (I-V) measurements were used to study the surface morphology and electrical properties of SnO2 nanostructured thin films. The diameter size of SnO2 nanostructures which immersed at 3.0, 3.5 and 4.0 h were in range 10-20 nm, 20-30 nm and 30-50 nm, respectively. The results shows the highest electrical properties was at 3.0 h of immersion time.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 268)

Pages:

274-278

Citation:

Online since:

October 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. S. Baik, G. Sakai, N. Miura, and N. Yamazoe, Hydrothermally treated sol solution of tin oxide for thin-film gas sensor, Sensors Actuators, B Chem., vol. 63, no. 1, p.74–79, (2000).

DOI: 10.1016/s0925-4005(99)00513-4

Google Scholar

[2] A. Azam, A. S. Ahmed, S. S. Habib, and A. H. Naqvi, Effect of Mn doping on the structural and optical properties of SnO2 nanoparticles, Journal of Alloys and Compounds, vol. 523, p.83–87, (2012).

DOI: 10.1016/j.jallcom.2012.01.072

Google Scholar

[3] N. D. Md Sin, S. A. Kamaruddin, M. Z. Musa, and M. Rusop, Effect of Deposition Time SnO2 Thin Film Deposited using Thermal CVD for Humidity Sensor Application, p.459–462, (2011).

DOI: 10.1109/isiea.2011.6108752

Google Scholar

[4] S. Das and V. Jayaraman, SnO2: A comprehensive review on structures and gas sensors, Prog. Mater. Sci., vol. 66, p.112–255, (2014).

DOI: 10.1016/j.pmatsci.2014.10.001

Google Scholar

[5] G. Zhang and M. Liu, Effect of particle size and dopant on properties of SnO 2 -based gas sensors, p.144–152, (2000).

Google Scholar

[6] M. M. Rahman, A. Jamal, S. B. Khan, and M. Faisal, Highly sensitive ethanol chemical sensor based on Ni-doped SnO2 nanostructure materials, Biosens. Bioelectron., vol. 28, no. 1, p.127–134, (2011).

DOI: 10.1016/j.bios.2011.07.024

Google Scholar

[7] L. S. Chuah, M. S. Yaacob, Z. Hassan, and P. Section, Low temperature synthesis of Ni-doped SnO2 thin films by spin coating route, vol. 6, no. 1, p.149–153, (2012).

Google Scholar

[8] N. D. Md Sin, M. H. Mamat, M. Z. Musa, A. Aziz, and M. Rusop, Effect of Growth Duration to the Electrical Properties of Zn Doped SnO2 Thin Film toward Humidity Sensor Application, (2012).

DOI: 10.1109/beiac.2012.6226112

Google Scholar

[9] M. Batzill and U. Diebold, The surface and materials science of tin oxide, Prog. Surf. Sci., vol. 79, no. 2–4, p.47–154, (2005).

DOI: 10.1016/j.progsurf.2005.09.002

Google Scholar

[10] M. M. Arafat, B. Dinan, S. A. Akbar, and A. S. M. A. Haseeb, Gas sensors based on one dimensional nanostructured metal-oxides: A review, Sensors (Switzerland), vol. 12, no. 6, p.7207–7258, (2012).

DOI: 10.3390/s120607207

Google Scholar

[11] M. Awalludin, M. H. Mamat, M. Z. Sahdan, Z. Mohamad, and M. Rusop, Zinc Oxide Nanorods Characteristics Prepared by Sol-Gel Immersion Method Immersed at Different Times, Adv. Mater. Res., vol. 667, p.375–379, (2013).

DOI: 10.4028/www.scientific.net/amr.667.375

Google Scholar

[12] S. Shukla, S. Patil, S. C. Kuiry, Z. Rahman, T. Du, L. Ludwig, C. Parish, and S. Seal, Synthesis and characterization of sol-gel derived nanocrystalline tin oxide thin film as hydrogen sensor, Sensors Actuators, B Chem., vol. 96, no. 1–2, p.343–353, (2003).

DOI: 10.1016/s0925-4005(03)00568-9

Google Scholar

[13] H. S. Nalwa, Handbook of Thin Films. Elsevier, (2002).

Google Scholar

[14] D. Yang, Nanocomposite Films for Gas Sensing, Adv. Nanocomposites - Synth. Charact. Ind. Appl., p.857–882, (2011).

Google Scholar

[15] E. Heredia, C. Bojorge, J. Casanova, H. Cánepa, A. Craievich, and G. Kellermann, Nanostructured ZnO thin films prepared by sol–gel spin-coating, Appl. Surf. Sci., vol. 317, p.19–25, Oct. (2014).

DOI: 10.1016/j.apsusc.2014.08.046

Google Scholar

[16] N. D. Md Sin, M. F. Tahar, M. H. Mamat, and M. Rusop, Recent Trends in Nanotechnology and Materials Science, (2014).

Google Scholar

[17] S. G. Ansari, P. Boroojerdian, S. R. Sainkar, R. N. Karekar, R. C. Aiyer, and S. K. Kulkarni, Grain size effects on H2 gas sensitivity of thick film resistor using SnO2 nanoparticles, Thin Solid Films, vol. 295, no. 1–2, p.271–276, (1997).

DOI: 10.1016/s0040-6090(96)09152-3

Google Scholar

[18] A. Johari, M. C. Bhatnagar, and V. Rana, Growth, Characterization and I-V Characteristics of Tin Oxide (SnO2) nanowires, vol. 3, no. 6, pp.515-518, (2012).

DOI: 10.5185/amlett.2012.icnano.251

Google Scholar