[1]
Ranjith, P.G., Viete, D.R., Chen, B.J., & Perera, M.S.A. (2012). Transformation plasticity and the effect of temperature on the mechanical behaviour of Hawkesbury sandstone at atmospheric pressure. Engineering Geology, (151), 120-127.
DOI: 10.1016/j.enggeo.2012.09.007
Google Scholar
[2]
Liu, S., Wang, Y., Yu, L., & Oakey, J. (2006). Thermodynamic equilibrium study of trace element transformation during underground coal gasification. Fuel Processing Technology, 87(3), 209-215.
DOI: 10.1016/j.fuproc.2005.07.006
Google Scholar
[3]
Liu, S., Ma, W., Zhang, Y., Zhang, Y., & Qi, K. (2018). Sequential transformation behavior of iron-bearing minerals during underground coal gasification. Minerals, 8(3), 90.
DOI: 10.3390/min8030090
Google Scholar
[4]
Nitao, J.J., Buscheck, T.A., Ezzedine, S.M., Friedmann, S.J., & Camp, D.W. (2010).
Google Scholar
[5]
Gorova, A., Pavlychenko, A., Kulyna, S., & Shkremetko, O. (2012). Ecological problems of post-industrial mining areas. Geomechanical Processes During Underground Mining, 35-40.
DOI: 10.1201/b13157-8
Google Scholar
[6]
Den'gina, N.I., Kazak, V.N., & Pristash, V.V. (1993). Changes in rocks by the action of high temperatures under coal gasification. Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, (5), 96-103.
Google Scholar
[7]
Luo, J., Wang, L., Tang, F., He, Y., & Zheng, L. (2011). Variation in the temperature field of rocks overlying a high-temperature cavity during underground coal gasification. Mining Science and Technology (China), 21(5), 709-713.
DOI: 10.1016/j.mstc.2011.03.005
Google Scholar
[8]
Xin, L., Wang, Z., Huang, W., Kang, G., Lu, X., Zhang, P., & Wang, J. (2014). Temperature field distribution of burnt surrounding rock in UCG stope. International Journal of Mining Science and Technology, 24(4), 573–580.
DOI: 10.1016/j.ijmst.2014.06.001
Google Scholar
[9]
Falshtynskyi, V.S., Dychkovskyi, R.O., Saik, P.B., Lozynskyi, V.H., & Cabana, E.C. (2017). Formation of thermal fields by the energy-chemical complex of coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu (5), 36-42.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[10]
Pivnyak, G,G, Dychkovskyi R.O, Falshtynskyi, V.S., Cabana, E.C. (2017). Edgar Energy Efficiency and Economic Aspects of Mining Wastes Utilization within the Closed Cycle of Underground Gas Generator. Advanced Engineering Forum. (25), pp.1-10.
DOI: 10.4028/www.scientific.net/aef.25.1
Google Scholar
[11]
Caceres, E., & Alca, J. J. (2016). Potential For Energy Recovery From A Wastewater Treatment Plant. IEEE Latin America Transactions, 14(7), 3316-3321.
DOI: 10.1109/tla.2016.7587636
Google Scholar
[12]
Dychkovskyi, R.O. (2013). Scientific principles of synthesis of technologies for the extraction of coal in weakly metamorphosed rocks. Dnipro: National Mining University.
Google Scholar
[13]
Falshtynskyi, V. (2012). New method for justification of the technological parameters of coal gasification in the test setting. Geomechanical Processes During Underground Mining – Proceedings of the School of Underground Mining, 201-208.
DOI: 10.1201/b13157-36
Google Scholar
[14]
Stańczyk, K., Howaniec, N., Smoliński, A., Świądrowski, J., Kapusta, K., Wiatowski, M., Rogut, J. (2011). Gasification of lignite and hard coal with air and oxygen enriched air in a pilot scale ex situ reactor for underground gasification. Fuel, 90(5), 1953-1962.
DOI: 10.1016/j.fuel.2010.12.007
Google Scholar
[15]
Stańczyk, K., Kapusta, K., Wiatowski, M., Świądrowski, J., Smoliński, A., Rogut, J., & Kotyrba, A. (2012). Experimental simulation of hard coal underground gasification for hydrogen production. Fuel, 91(1), 40-50.
DOI: 10.1016/j.fuel.2011.08.024
Google Scholar
[16]
Falshtyns'kyy, V., Dychkovs'kyy, R., Lozyns'kyy, V., & Saik, P. (2013). Justification of the gasification channel length in underground gas generator. Annual Scientific-Technical Colletion -Mining of Mineral Deposits 2013, 125-132.
DOI: 10.1201/b16354-22
Google Scholar
[17]
Pivnyak, G., Dychkovskyi, R., Smirnov, A., & Cherednichenko, Y. (2013). Some aspects on the software simulation implementation in thin coal seams mining. Energy Efficiency Improvement of Geotechnical Systems, 1-10.
DOI: 10.1201/b16355-2
Google Scholar
[18]
Dychkovskyi, R.O. (2015). Determination of the rock subsidence spacing in the well underground coal gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[19]
Dychkovskyi, R.O. (2015). Forming the bilayer artificially created shell of georeactor in underground coal well gasification. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 30-36.
DOI: 10.29202/nvngu/2019-5/4
Google Scholar
[20]
Tabachenko, M. (2016). Substantiating parameters of stratification cavities formation in the roof rocks during underground coal gasification. Mining of Mineral Deposits, 10(1), 16-24.
DOI: 10.15407/mining10.01.016
Google Scholar
[21]
Lozynskyi, V. H., Dychkovskyi, R. O., Falshtynskyi, V. S., & Saik P. B. (2015). Revisiting possibility to cross disjunctive geological faults by underground gasifier. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (4), 22–28.
DOI: 10.29202/nvngu/2018-3/5
Google Scholar
[22]
Sdvizhkova, Ye.A., Babets, D.V., & Smirnov, A.V. (2014). Support loading of assembly chamber in terms of western donbas plough longwall. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (5), 26-32.
DOI: 10.29202/nvngu
Google Scholar
[23]
Sotskov, V., & Saleev. I. (2013). Investigation of the rock massif stress strain state in conditions of the drainage drift overworking, Annual Scientific-Technical Colletion-Mining of Mineral Deposits 2013. 197–201.
DOI: 10.1201/b16354-35
Google Scholar
[24]
Lozynskyi, V.G., Dychkovskyi, R.O., Falshtynskyi, V.S., Saik, P.B., & Malanchuk, Ye.Z. (2016).
Google Scholar
[25]
Feng, Z., Zhao, Y., & Wan, Z. (2011). Experiment study of the thermal deformation of in-situ gas coal. Rock Mechanics: Achievements and Ambitions, 103-108.
DOI: 10.1201/b11438-22
Google Scholar
[26]
Liu, S., & Xu, J. (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, (185), 63-70.
DOI: 10.1016/j.enggeo.2014.11.013
Google Scholar
[27]
Otto, C., & Kempka, T. (2015). Thermo-Mechanical Simulations of Rock Behavior in Underground Coal Gasification Show Negligible Impact of Temperature-Dependent Parameters on Permeability Changes. Energies, 8(6), 5800-5827.
DOI: 10.3390/en8065800
Google Scholar
[28]
Kuz'menko, O., Petlyovanyy, M., & Stupnik, M. (2013). The influence of fine particles of binding materials on the strength properties of hardening backfill. Annual Scientific-Technical Colletion - Mining of Mineral Deposits 2013, 45–48.
DOI: 10.1201/b16354-9
Google Scholar
[29]
Dychkovskyi, R.O., Lozynskyi, V.H., Saik, P.B., Petlovanyi, M.V., Malanchuk, Ye.Z., & Malanchuk, Z.R. (2018). Modeling of the disjunctive geological fault influence on the exploitation wells stability during underground coal gasification. Archives of Civil and Mechanical Engineering, 18(4), 1183-1197.
DOI: 10.1016/j.acme.2018.01.012
Google Scholar
[30]
Saik, P.B., Dychkovskyi, R.O., Lozynskyi, V.H., Malanchuk, Z.R., & Malanchuk, Ye.Z. (2016). Revisiting the underground gasification of coal reserves from contiguous seams. Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu, (6), 60-66.
DOI: 10.29202/nvngu/2019-5/4
Google Scholar
[31]
Lavrov, N.V. (1957). Physical and chemical bases of combustion and gasification of fuel. Moscow: Metallizdat, 40 p.
Google Scholar
[32]
Zarubin, V. S. (2008). Matematicheskie modeli mechaniki i elektrodynamiku sploshnoi sredy. MGTU im. N.E. Baumana, 512 p.
Google Scholar
[33]
Sobolev, V. V., & Usherenko, S. M. (2006). Shock-wave initiation of nuclear transmutation of chemical elements. Journal de Physique IV (Proceedings), 134, 977-982.
DOI: 10.1051/jp4:2006134149
Google Scholar
[34]
Pisarenko, G. S., & Mozharovskiy, N.S. (1981). Uravneniya i kraevye zadachi teorii plastichnosti i polzuchesti: spravochnoe posobie. Kyiv: Naukova Dumka, 496 p.
Google Scholar
[35]
Sewell, G. (1985). Analysis of a Finite Element Method.
Google Scholar
[36]
Fadeev, A.B. (1987). Metod konechnykh elementov v geomekhanike. Moskva: Nedra, 211 p.
Google Scholar
[37]
Makarov, G.N., & Kharlampov, G.D. (1986). Khimicheskaya tekhnologiya tverdykh goryuchikh iskopaemykh. Moskva: Khimiya, 496 p.
Google Scholar
[38]
Samarskiy, A.A., & Nikolaev, E.S. (1978). Metody resheniya setochnykh uravneniy. Moskva: Nauka, 592 p.
Google Scholar