[1]
Xu, Y.N., Ching, W.Y., & Brickeen, B.K. (2000). Electronic structure and bonding in garnet crystals Gd3Sc2Ga3O12, Gd3Sc2Al3O12, and Gd3Ga3O12 compared to Y3Al3O12. Physical Review B, 61(3), 1817-1824.
Google Scholar
[2]
Kumar, K. K., Balaram, V., & Sirdeshmukh, L. (1992). Characterization and dielectric properties of almandine-pyrope garnet. Bulletin of Materials Science, 15(3), 279-284.
DOI: 10.1007/bf02927506
Google Scholar
[3]
Mao, Z., Lin, J.-F., Huang, S., Chen, J., Xiao, Y., & Chow, P. (2013). Synchrotron Mossbauer study of Fe-bearing pyrope at high pressures and temperatures. American Mineralogist, 98(7), 1146-1152.
DOI: 10.2138/am.2013.4321
Google Scholar
[4]
Huggins, F.E. (1975). 3D levels of ferrous-ions in silicate garnets. American Mineralogist, 60(3-4), 316-319.
Google Scholar
[5]
Amthauer, G., Annerste, H., & Hafner, S.S. (1976). The Mössbauer spectrum of 57Fe in silicate garnets. Zeitschrift Für Kristallographie – Crystalline Materials, 143(1-6).
DOI: 10.1524/zkri.1976.143.jg.14
Google Scholar
[6]
Murad, E. & Wagner, F.E. (1987) The Mössbauer spectrum of almandine. Physics and Chemistry of Minerals, 14, 264-269.
DOI: 10.1007/bf00307992
Google Scholar
[7]
Geiger, C.A., Armbruster, T., Lager, G.A., Jiang, K., Lottermoser, W., & Amthauer, G. (1992) A combined temperature dependent Fe Mössbauer and single crystal X-ray diffraction study of synthetic almandine: Evidence for the Gol'danskii Karyagin Effect. Physics and Chemistry of Minerals, 19, 131-126.
DOI: 10.1007/bf00198609
Google Scholar
[8]
Cerná, K., Mašlán, M., & Martinec, P. (2000) Mössbauer spectroscopy of garnets a of almandine-propel series. Materials Structure, (7), 6-9.
Google Scholar
[9]
K. Barcova, K., Mashlan, M., Zboril, R. Martinec, P. Kula, P. (2000) Thermal decomposition of almandine garnet: Mössbauer study. Czechoslovak Journal of Physics, 51(7), 749-754.
DOI: 10.1023/a:1017618420189
Google Scholar
[10]
Zboril, R., Mashlan, M., Machala, L., Walla, J., Barcova, K., & Martinec, P. (2004). Characterization and Thermal Behaviour of Garnets from Almandine-Pyrope Series at 1200°C. ICAME 2003, 403-410.
DOI: 10.1007/978-1-4020-2852-6_61
Google Scholar
[11]
Zboril, R., Mashlan, M. , Barcova, K. , Walla, E. Ferrow, J. Martinec P., (2003) Thermal behaviour of propel at 1000 and 1100°C: mechanism of Fe2+ oxidation and decomposition model. Physics and Chemistry of Minerals, 30(10), 620-627.
DOI: 10.1007/s00269-003-0355-x
Google Scholar
[12]
Schneeweiss, O., Zbořil, R., David, B., Heřmánek, M., & Mashlan, M. (2009). Solid-state synthesis of α-Fe and iron carbide nanoparticles by thermal treatment of amorphous Fe2O3. ISIAME 2008, 167-173.
DOI: 10.1007/978-3-642-01370-6_21
Google Scholar
[13]
Bucher, K., & Frey, M. (2002). Metamorphic Processes. Petrogenesis of Metamorphic Rocks, 49–104.
DOI: 10.1007/978-3-662-04914-3_3
Google Scholar
[14]
Whitney, D. L., Lang, H. M., & Ghent, E. D. (1995). Quantitative determination of metamorphic reaction history: mass balance relations between groundmass and mineral inclusion assemblages in metamorphic rocks. Contributions to Mineralogy and Petrology, 120(3-4), 404-411.
DOI: 10.1007/bf00306517
Google Scholar
[15]
Touret, J.L. (2001). Fluids in metamorphic rocks. Lithos, 55(1-4), 1-25.
Google Scholar
[16]
Novel composite coatings containing (TiC-Al2O3) powder. Materials Science and Engineering: A, 447(1-2), 87–94.
Google Scholar
[17]
Novak, G.A., & Gibbs G.V., (1971), Structure of sodium perborate monohydrate crystallography, Am. Mineral, 56, 790-825.
Google Scholar