A Review of Metal Additive Manufacturing Technologies

Article Preview

Abstract:

Additive manufacturing is a layer based manufacturing process aimed at producing parts directly from a 3D model. This paper provides a review of key technologies for metal additive manufacturing. It focuses on the effect of important process parameters on the microstructure and mechanical properties of the resulting part. Several materials are considered including aerospace alloys such as titanium (TiAl6V4 “UNS R56400”), aluminum (AlSi10Mg “UNS A03600”), iron-and nickel-based alloys (stainless steel 316L “UNS S31603”, Inconel 718 “UNS N07718”, and Invar 36 FeNi36 “UNS K93600”).

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 278)

Pages:

1-14

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] ASTM, Standard Terminology for Additive Manufacturing - General Principles - Terminology,, in ISO/ASTM 52900, ed. West Conshohocken, PA, (2015).

DOI: 10.31030/2631641

Google Scholar

[2] H. A. Youssef, H. A. El-Hofy, and M. H. Ahmed, Manufacturing Technology: Materials, Processes, and Equipment. International Edition: Taylor & Francis Group, CRC Press, (2012).

Google Scholar

[3] N. Guo and M. C. Leu, Additive Manufacturing: Technology, Applications and Research Needs,, Frontiers of Mechanical Engineering, vol. 8, pp.215-243, (2013).

DOI: 10.1007/s11465-013-0248-8

Google Scholar

[4] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies; 3D Printing, Rapid Prototyping, and Direct Digital Manufacturing. New York, USA: Springer, (2015).

DOI: 10.1007/978-1-4939-2113-3

Google Scholar

[5] K. V. Wong and A. Hernandez, A Review of Additive Manufacturing,, International Scholarly Research Network (ISRN) Mechanical Engineering, vol. 2012, (2012).

Google Scholar

[6] C. W. Hull, Apparatus for Production of Three-Dimensional Objects by Stereolithography,, Unites States Patent, (1986).

Google Scholar

[7] F. Doreau, C. Chaput, and T. Chartier, Stereolithography for Manufacturing Ceramic Parts,, Advanced Engineering Materials, vol. 2, pp.493-496, (2000).

DOI: 10.1002/1527-2648(200008)2:8<493::aid-adem493>3.0.co;2-c

Google Scholar

[8] T. Chartier, C. Chaput, F. Doreau, and M. Loiseau, Stereolithography of Structural Complex Ceramic Parts,, Journal of Materials Science, vol. 37, pp.3141-3147, (2002).

DOI: 10.1023/a:1016102210277

Google Scholar

[9] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, et al., Continuous Liquid Interface Production of 3D Objects,, Science, vol. 347, pp.1349-1352, (2015).

DOI: 10.1126/science.aaa2397

Google Scholar

[10] C. K. Chua, K. F. Leong, and C. S. Lim, Rapid Prototyping: Principles and Applications, Second ed. Singapore: World Scientific Publishing Company, (2003).

Google Scholar

[11] H. A. El-Hofy, Advanced Machining Processes; Nontraditional and Hybrid Machining Processes. International Edition: McGraw-Hill, (2005).

Google Scholar

[12] A. Boschetto and L. Bottini, Accuracy Prediction in Fused Deposition Modeling,, International Journal of Advanced Manufacturing Technology, vol. 73, pp.913-928, (2014).

DOI: 10.1007/s00170-014-5886-4

Google Scholar

[13] G. S. Bual and P. Kumar, Methods to Improve Surface Finish of Parts Produced by Fused Deposition Modeling,, Manufacturing Science and Technology, vol. 2, pp.51-55, (2014).

DOI: 10.13189/mst.2014.020301

Google Scholar

[14] F. Ning, W. Cong, J. Qiu, J. Wei, and S. Wang, Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling,, Composites Part B: Engineering, vol. 80, pp.369-378, (2015).

DOI: 10.1016/j.compositesb.2015.06.013

Google Scholar

[15] M. Yakout and M. A. Elbestawi, Additive Manufacturing of Composite Materials: An Overview,, in The 6th International Conference on Virtual Machining Process Technology, Montréal, Canada, (2017).

Google Scholar

[16] J. F. Rodriguez, J. P. Thomas, and J. E. Renaud, Maximizing the Strength of Fused-Deposition ABS Plastic Parts , in International Solid Freeform Fabrication Symposium, USA, (1999).

Google Scholar

[17] M. Montero, S. Roundy, D. Odell, S.-H. Ahn, and P. K. Wright, Material Characterization of Fused Deposition Modeling (FDM) ABS by Designed Experiments,, in Rapid Prototyping and Manufacturing Conference, Ohio, USA, (2001).

DOI: 10.1108/13552540210441166

Google Scholar

[18] A. Arivazhagan and S. H. Masood, Dynamic Mechanical Properties of ABS Material Processed by Fused Deposition Modelling,, International Journal of Engineering Research and Applications, vol. 2, pp.2009-2014, (2012).

Google Scholar

[19] R. Singh, Process Capability Analysis of Fused Deposition Modelling for Plastic Components,, Rapid Prototyping Journal, vol. 20, pp.69-76, (2014).

DOI: 10.1108/rpj-02-2012-0018

Google Scholar

[20] J. Mireles, D. Espalin, D. Roberson, B. Zinniel, F. Medina, and R. Wicker, Fused Deposition Modeling of Metals,, in International Solid Freeform Fabrication Symposium, USA, 2012, pp.836-845.

Google Scholar

[21] M. Yakout, A. Cadamuro, M. A. Elbestawi, and S. C. Veldhuis, The selection of process parameters in additive manufacturing for aerospace alloys,, International Journal of Advanced Manufacturing Technology, vol. 92, pp.2081-2098, September 01 (2017).

DOI: 10.1007/s00170-017-0280-7

Google Scholar

[22] M. Yakout, M. A. Elbestawi, and S. C. Veldhuis, On the characterization of stainless steel 316L parts produced by selective laser melting,, International Journal of Advanced Manufacturing Technology, vol. Online First, pp.1-22, (2017).

DOI: 10.1007/s00170-017-1303-0

Google Scholar

[23] J.-P. Kruth, P. Mercelis, L. Froyen, and M. Rombouts, Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting,, in International Solid Freeform Fabrication Symposium, USA, (2004).

DOI: 10.1108/13552540510573365

Google Scholar

[24] B. V. D. Schueren, Basic Contributions to the Development of the Selective Metal Powder Sintering Process,, PhD Thesis, University of Leuven, Leuven, Belgium, (1996).

Google Scholar

[25] T. B. Sercombe and G. B. Schaffer, Rapid Manufacturing of Aluminum Components,, Science, vol. 301, pp.1225-1227, (2003).

DOI: 10.1126/science.1086989

Google Scholar

[26] J.-P. Kruth, M. C. Leu, and T. Nakagawa, Progress in Additive Manufacturing and Rapid Prototyping,, CIRP Annals - Manufacturing Technology, vol. 47, pp.525-540, (1998).

DOI: 10.1016/s0007-8506(07)63240-5

Google Scholar

[27] K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W. Verheecke, and J.-P. Kruth, Process Optimization and Microstructural Analysis for Selective Laser Melting of AlSi10Mg,, in International Solid Freeform Fabrication Symposium, USA, (2011).

Google Scholar

[28] R. Udroiu, Powder Bed Additive Manufacturing Systems and its Applications,, Academic Journal of Manufacturing Engineering, vol. 10, pp.122-129, (2012).

Google Scholar

[29] F. Miller, Schneller Zahn aus Titan (Fast Tooth made of Titanium),, Fraunhofer Magazin, vol. 4, (2002).

Google Scholar

[30] C. Over, W. Meiners, K. Wissenbach, M. Lindemann, and G. Hammann, Selective Laser Melting: A New Approach for the Direct Manufacturing of Metal Parts and Tools,, in International Conference on Laser Assisted Net Shape Engineering, Furth, Germany, (2001).

Google Scholar

[31] D. D. Gu, W. Meiners, K. Wissenbach, and R. Poprawe, Laser additive manufacturing of metallic components: materials, processes and mechanisms,, International Materials Reviews, vol. 57, pp.133-164, 2012/05/01 (2012).

DOI: 10.1179/1743280411y.0000000014

Google Scholar

[32] L. E. Murr, E. Martinez, K. N. Amato, S. M. Gaytan, J. Hernandez, D. A. Ramirez, et al., Fabrication of Metal and Alloy Components by Additive Manufacturing: Examples of 3D Materials Science,, Journal of Materials Research and Technology, vol. 1, pp.42-54, (2012).

DOI: 10.1016/s2238-7854(12)70009-1

Google Scholar

[33] P. Vora, F. Derguti, K. Mumtaz, I. Todd, and N. Hopkinson, Investigating a Semi-Solid Processing Technique using Metal Powder Bed Additive Manufacturing Processes,, in International Solid Freeform Fabrication Symposium, USA, (2013).

Google Scholar

[34] K. M. Taminger and R. A. Hafley. (2006) Electron Beam Freeform Fabrication for Cost Effective Near-Net Shape Manufacturing. Cost Effective Manufacture via Net-Shape Processing (RTO-MP-AVT-139). 16 (1-10).

Google Scholar

[35] R. J. Urbanic, S. M. Saqib, and K. Aggarwal, Using Predictive Modeling and Classification Methods for Single and Overlapping Bead Laser Cladding to Understand Bead Geometry to Process Parameter Relationships,, Journal of Manufacturing Science and Engineering, vol. 138, p.051012 (1-13), (2016).

DOI: 10.1115/1.4032117

Google Scholar

[36] R. P. Mudge and N. R. Wald, Laser Engineered Net Shaping Advances Additive Manufacturing and Repair,, Welding Journal, vol. 86, pp.44-48, (2007).

Google Scholar

[37] L. Xue and M. Ul-Islam, Laser Consolidation – A Novel One-Step Manufacturing Process for Making Net-Shape Functional Components,, in Cost Effective Manufacture via Net-Shape Processing (RTO-MP-AVT-139), France, 2006, pp. (15) 1-14.

DOI: 10.1533/9781845699819.6.492

Google Scholar

[38] H. Zhang, J. Xu, and G. Wang, Fundamental Study on Plasma Deposition Manufacturing,, in International Conference on Open Magnetic Systems for Plasma Confinement, Jeju Island, Korea, (2003).

Google Scholar

[39] B. Baufeld, O. V. d. Biest, and R. Gault, Additive Manufacturing of Ti-6Al-4V Components by Shaped Metal Deposition: Microstructure and Mechanical Properties,, Materials & Design, vol. 31, pp. S106-S111, (2010).

DOI: 10.1016/j.matdes.2009.11.032

Google Scholar

[40] B. Baufeld, O. v. d. Biest, and R. Gault, Microstructure of Ti-6Al-4V Specimens Produced by Shaped Metal Deposition,, International Journal of Material Research, vol. 100, pp.1536-1542, (2009).

DOI: 10.3139/146.110217

Google Scholar

[41] P. A. Kobryn and S. L. Semiatin, Microstructure and Texture Evolution During Solidification Processing of Ti-6Al-4V,, Journal of Materials Processing Technology, vol. 135, pp.330-339, (2003).

DOI: 10.1016/s0924-0136(02)00865-8

Google Scholar

[42] W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. B. Williams, et al., The Status, Challenges, and Future of Additive Manufacturing in Engineering,, Computer-Aided Design, (2015).

DOI: 10.1016/j.cad.2015.04.001

Google Scholar

[43] S. F. S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H. S. C. Metselaar, N. A. Kadri, et al., A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing,, Science and Technology of Advanced Materials, vol. 16, pp.1-20, (2015).

DOI: 10.1088/1468-6996/16/3/033502

Google Scholar

[44] D. Günther, B. Heymel, J. F. Günther, and I. Ederer, Continuous 3D-Printing for Additive Manufacturing,, Rapid Prototyping Journal, vol. 20, pp.320-327, (2014).

DOI: 10.1108/rpj-08-2012-0068

Google Scholar

[45] M. Lanzetta and E. Sachs, Improved Surface Finish in 3D Printing Using Bimodal Powder Distribution,, Rapid Prototyping Journal, vol. 9, pp.157-166, (2003).

DOI: 10.1108/13552540310477463

Google Scholar

[46] M. Feygin, A. Shkolnik, M. N. Diamond, and E. Dvorskiy, Laminated Object Manufacturing System , USA Patent US5730817A, (1996).

Google Scholar

[47] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, and D. M. Spence, Evaluation of 3D Printing and its Potential Imapct on Biotechnology and the Chemical Sciences,, Analytical Chemistry, vol. 86, pp.3240-3253, (2014).

DOI: 10.1021/ac403397r

Google Scholar

[48] E. C. Santos, M. Shiomi, K. Osakada, and T. Laoui, Rapid Manufacturing of Metal Components by Laser Forming,, International Journal of Machine Tools & Manufacture vol. 46, pp.1459-1468, (2006).

DOI: 10.1016/j.ijmachtools.2005.09.005

Google Scholar

[49] D. Yagnik, Fused Deposition Modeling - A Rapid Prototyping Technique for Product Cycle Time Reduction Cost Effectively in Aerospace Applications,, IOSR Journal of Mechanical and Civil Engineering, vol. 5, pp.62-68, (2014).

Google Scholar

[50] N. K. Dey, Additive Manufacturing Laser Deposition of Ti-6Al-4V for Aerospace Repair Application,, M.Sc. Thesis Missouri University of Science and Technology, Missouri, USA, (2014).

Google Scholar

[51] T. Wohlers. (2011) Making Products By Using Additive Manufacturing. Manufacturing Engineering Magazine. 70-77.

Google Scholar

[52] P. Michaleris, Modeling Metal Deposition in Heat Transfer Analyses of Additive Manufacturing Processes,, Finite Elements in Analysis and Design, vol. 86, pp.51-60, (2014).

DOI: 10.1016/j.finel.2014.04.003

Google Scholar

[53] J. Coykendall, M. Cotteleer, J. Holdowsky, and M. Mahto, 3D Opportunity in Aerospace and Defense: Additive Manufacturing Takes Flight,, Deloitte University Press UK2014.

Google Scholar

[54] National Research Council, 3D Printing in Space. Washington, DC, USA: National Academies Press, (2014).

Google Scholar

[55] P. A. Kobryn, N. R. Ontko, L. P. Perkins, and J. S. Tiley, Additive Manufacturing of Aerospace Alloys for Aircraft Structures,, in Cost Effective Manufacture via Net-Shape Processing (RTO-MP-AVT-139), Neuilly-sur-Seine, France, 2006, pp. (3) 1-14.

Google Scholar

[56] J. Scott, N. Gupta, C. Weber, S. Newsome, T. Wohlers, and T. Caffrey, Additive Manufacturing: Status and Opportunities,, IDA Science and Technology Policy Institute, Washington, DC, USA (2012).

Google Scholar

[57] W. E. Frazier, D. Polakovics, and W. Koegel, Qualifying of Metallic Materials and Structures for Aerospace Applications,, JOM, vol. 53, pp.16-18, (2001).

DOI: 10.1007/s11837-001-0171-z

Google Scholar

[58] S. Guessasma, W. Zhang, J. Zhu, S. Belhabib, and H. Nouri, Challenges of Additive Manufacturing Technologies from an Optimisation Perspective,, International Journal for Simulation and Multidisciplinary Design Optimization, vol. 6, pp. (A9) 1-13, (2015).

DOI: 10.1051/smdo/2016001

Google Scholar

[59] C. J. Smith, F. Derguti, E. H. Nava, M. Thomas, S. Tammas-Williams, S. Gulizia, et al., Dimensional Accuracy of Electron Beam Melting (EBM) Additive Manufacture with Regard to Weight Optimized Truss Structures,, Journal of Materials Processing Technology, vol. 229, pp.128-138, (2016).

DOI: 10.1016/j.jmatprotec.2015.08.028

Google Scholar

[60] Energetics Incorporated, Measurement Science Roadmap for Metal-Based Additive Manufacturing,, National Institute of Standards and Technology (NIST), U.S. Department of Commerce, Columbia, Maryland (2013).

Google Scholar

[61] D. Cooper, J. Thornby, N. Blundell, R. Henrys, M. A. Williams, and G. Gibbons, Design and Manufacture of High Performance Hollow Engine Valves by Additive Layer Manufacturing,, Materials & Design, vol. 69, pp.44-55, (2015).

DOI: 10.1016/j.matdes.2014.11.017

Google Scholar

[62] S. Biamino, B. Klöden, T. Weißgärber, B. Kieback, and U. Ackelid, Properties of a TiAl Turbocharger Wheel Produced by Electron Beam Melting,, in Fraunhofer Direct Digital Manufacturing Conference, Berlin, Germany, (2014).

Google Scholar

[63] C. Beyer, Strategic Implications of Current Trends in Additive Manufacturing,, Journal of Manufacturing Science and Engineering, vol. 136, p.064701 (1-6), (2014).

Google Scholar

[64] C. A. Giffi, B. Gangula, and P. Illinda, 3D Opportunity in the Automotive Industry: Additive Manufacturing hits the Road,, Deloitte University Press (2014).

Google Scholar

[65] M. Cotteleer, M. Neier, and J. Crane, 3D Opportunity in Tooling: Additive Manufacturing Shapes the Future,, Deloitte University Press (2014).

Google Scholar

[66] A. V. Villalon, Electron Beam Fabrication of Injection Mold Tooling with Conformal Cooling Channels,, M.Sc. Thesis Industrial Engineering North Carolina State University, Raleigh, North Carolina, USA (2005).

Google Scholar

[67] A. Gebhardt, F.-M. Schmidt, J.-S. Hötter, W. Sokalla, and P. Sokalla, Additive Manufacturing by Selective Laser Melting the Realizer Desktop Machine and its Application for the Dental Industry,, Physics Procedia, vol. 5, pp.543-549, (2010).

DOI: 10.1016/j.phpro.2010.08.082

Google Scholar

[68] B. Vandenbroucke and J. P. Kruth, Selective Laser Melting of Biocompatible Metals for Rapid Manufacturing of Medical Parts,, Rapid Prototyping Journal, vol. 13, pp.196-203, (2007).

DOI: 10.1108/13552540710776142

Google Scholar

[69] J. Banks, Adding Value in Additive Manufacturing: Researchers in the United Kingdom and Europe Look to 3D Printing for Customization,, IEEE Pulse, vol. 4, pp.22-26, (2013).

DOI: 10.1109/mpul.2013.2279617

Google Scholar

[70] L. Mertz, Dream it, Design it, Print it in 3-D: What Can 3-D Printing do for you?,, IEEE Pulse, vol. 4, pp.15-21, (2013).

DOI: 10.1109/mpul.2013.2279616

Google Scholar

[71] O. Campbell, I. Christopher, and W. Thomas, Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges,, Rapid Prototyping Journal, vol. 19, pp.353-364, (2013).

DOI: 10.1108/rpj-12-2011-0127

Google Scholar

[72] J.-K. Lee and T. T. Xu, Recent Progress in Scalable Nanomanufacturing,, JOM, vol. 67, pp.27-28, (2015).

Google Scholar

[73] S. Leuders, M. Thöne, A. Riemer, T. Niendorf, T. Tröster, H. A. Richard, et al., On the Mechanical Behaviour of Titanium Alloy TiAl6V4 Manufactured by Selective Laser Melting: Fatigue Resistance and Crack Growth Performance,, International Journal of Fatigue, vol. 48, pp.300-307, (2013).

DOI: 10.1016/j.ijfatigue.2012.11.011

Google Scholar

[74] G. Kasperovich and J. Hausmann, Improvement of Fatigue Resistance and Ductility of TiAl6V4 Processed by Selective Laser Melting,, Journal of Materials Processing Technology, vol. 220, pp.202-214, (2015).

DOI: 10.1016/j.jmatprotec.2015.01.025

Google Scholar

[75] M. Simonelli, Microstructure Evolution and Mechanical Properties of Selective Laser Melted Ti-6Al-4V,, PhD Thesis School of Aeronautical, Automotive, Chemical and Materials Engineering, Loughborough University, Leicestershire, UK, (2014).

Google Scholar

[76] J. Vaithilingam, R. D. Goodridge, R. J. M. Hague, S. D. R. Christie, and S. Edmondson, The Effect of Laser Remelting on the Surface Chemistry of Ti6al4V Components Fabricated by Selective Laser Melting,, Journal of Materials Processing Technology, vol. 232, pp.1-8, (2016).

DOI: 10.1016/j.jmatprotec.2016.01.022

Google Scholar

[77] G. Kasperovich, J. Haubrich, J. Gussone, and G. Requena, Correlation between Porosity and Processing Parameters in TiAl6V4 Produced by Selective Laser Melting,, Materials & Design, vol. 105, pp.160-170, (2016).

DOI: 10.1016/j.matdes.2016.05.070

Google Scholar

[78] L. Thijs, F. Verhaeghe, T. Craeghs, J. V. Humbeeck, and J.-P. Kruth, A Study of the Microstructural Evolution during Selective Laser Melting of Ti–6Al–4V,, Acta Materialia, vol. 58, pp.3303-3312, (2010).

DOI: 10.1016/j.actamat.2010.02.004

Google Scholar

[79] B. Vrancken, L. Thijs, J.-P. Kruth, and J. V. Humbeeck, Heat Treatment of Ti6Al4V Produced by Selective Laser Melting: Microstructure and Mechanical Properties,, Journal of Alloys and Compounds, vol. 541, pp.177-185, (2012).

DOI: 10.1016/j.jallcom.2012.07.022

Google Scholar

[80] B. Song, S. Dong, H. Liao, and C. Coddet, Process Parameter Selection for Selective Laser Melting of Ti6Al4V based on Temperature Distribution Simulation and Experimental Sintering,, International Journal of Advanced Manufacturing Technology, vol. 61, pp.967-974, (2012).

DOI: 10.1007/s00170-011-3776-6

Google Scholar

[81] E. Uhlmann, R. Kersting, T. B. Klein, M. F. Cruz, and A. V. Borille, Additive Manufacturing of Titanium Alloy for Aircraft Components,, Procedia CIRP, vol. 35, pp.55-60, (2015).

DOI: 10.1016/j.procir.2015.08.061

Google Scholar

[82] Y. Zhai, H. Galarraga, and D. A. Lados, Microstructure Evolution, Tensile Properties, and Fatigue Damage Mechanisms in Ti-6Al-4V Alloys Fabricated by Two Additive Manufacturing Techniques,, Procedia Engineering, vol. 114, pp.658-666, (2015).

DOI: 10.1016/j.proeng.2015.08.007

Google Scholar

[83] N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated using Electron Beam Melting (EBM), Part 1: Distance from Build Plate and Part Size,, Materials Science & Engineering A, vol. 375, pp.264-270, (2013).

DOI: 10.1016/j.msea.2013.02.064

Google Scholar

[84] N. Hrabe and T. Quinn, Effects of Processing on Microstructure and Mechanical Properties of a Titanium Alloy (Ti–6Al–4V) Fabricated using Electron Beam Melting (EBM), Part 2: Energy Input, Orientation, and Location,, Materials Science & Engineering A, vol. 573, pp.271-277, (2013).

DOI: 10.1016/j.msea.2013.02.065

Google Scholar

[85] H. Gong, K. Rafi, T. Starr, and B. Stucker, The Effects of Processing Parameters on Defect Regularity in Ti-6Al-4V Parts Fabricated By Selective Laser Melting and Electron Beam Melting,, in International Solid Freeform Fabrication Symposium, USA, 2013, pp.424-439.

DOI: 10.1016/j.matdes.2015.07.147

Google Scholar

[86] S. Price, B. Cheng, J. Lydon, K. Cooper, and K. Chou, On Process Temperature in Powder-Bed Electron Beam Additive Manufacturing: Process Parameter Effects,, Journal of Manufacturing Science and Engineering, vol. 136, p.061019 (1-10), (2014).

DOI: 10.1115/1.4028485

Google Scholar

[87] M. Mahfoud and D. Emadi, Aluminum Recycling - Challenges and Opportunities,, Advanced Materials Research, vol. 83-86, pp.571-578, (2010).

DOI: 10.4028/www.scientific.net/amr.83-86.571

Google Scholar

[88] N. T. Aboulkhair, N. M. Everitt, I. Ashcroft, and C. Tuck, Reducing Porosity in AlSi10Mg Parts Processed by Selective Laser Melting , Additive Manufacturing, vol. 1-4, pp.77-86, (2014).

DOI: 10.1016/j.addma.2014.08.001

Google Scholar

[89] C. Weingarten, D. Buchbinder, N. Pirch, W. Meiners, K. Wissenbach, and R. Poprawe, Formation and Reduction of Hydrogen Porosity during Selective Laser Melting of AlSi10Mg,, Journal of Materials Processing Technology, vol. 221, pp.112-120, (2015).

DOI: 10.1016/j.jmatprotec.2015.02.013

Google Scholar

[90] D. Manfredi, F. Calignano, M. Krishnan, R. Canali, E. P. Ambrosio, S. Biamino, et al., Additive Manufacturing of Al Alloys and Aluminium Matrix Composites (AMCs),, in Light Metal Alloys Applications, W. A. Monteiro, Ed., ed: InTech, (2014).

DOI: 10.5772/58534

Google Scholar

[91] S. Siddique, M. Imran, E. Wycisk, C. Emmelmann, and F. Walther, Influence of Process-Induced Microstructure and Imperfections on Mechanical Properties of AlSi12 Processed by Selective Laser Melting,, Journal of Materials Processing Technology, vol. 221 pp.205-213, (2015).

DOI: 10.1016/j.jmatprotec.2015.02.023

Google Scholar

[92] K. Kempen, L.Thijs, J. V. Humbeeck, and J.-P. Kruth, Mechanical Properties of AlSi10Mg Produced by Selective Laser Melting,, Physics Procedia, vol. 39, pp.439-446, (2012).

DOI: 10.1016/j.phpro.2012.10.059

Google Scholar

[93] T. M. Mower and M. J. Long, Mechanical Behavior of Additive Manufactured, Powder-Bed Laser-Fused Materials,, Materials Science & Engineering A, vol. 651, pp.198-213, (2016).

DOI: 10.1016/j.msea.2015.10.068

Google Scholar

[94] R. Canali, Study, Development and Characterization of Aluminum Based Materials by Additive Manufacturing,, PhD Thesis, Polytechnic University of Turin, Italy, (2015).

Google Scholar

[95] A. B. Spierings and G. Levy, Comparison of Density of Stainless Steel 316L Parts Produced with Selective Laser Melting using Different Powder Grades,, in International Solid Freeform Fabrication Symposium, USA, 2009, pp.342-353.

Google Scholar

[96] A. B. Spierings, N. Herres, and G. Levy, Influence of the Particle Size Distribution on Surface Quality and Mechanical Properties in Additive Manufactured Stainless Steel Parts,, in International Solid Freeform Fabrication Symposium, USA, 2010, pp.397-406.

DOI: 10.1108/13552541111124770

Google Scholar

[97] J. A. Cherry, H. M. Davies, S. Mehmood, N. P. Lavery, S. G. R. Brown, and J. Sienz, Investigation into the Effect of Process Parameters on Microstructural and Physical Properties of 316L Stainless Steel Parts by Selective Laser Melting.,, International Journal of Advanced Manufacturing Technology, vol. 76, pp.869-879, (2015).

DOI: 10.1007/s00170-014-6297-2

Google Scholar

[98] J. Delgado, J. Ciurana, and C. A. Rodríguez, Influence of Process Parameters on Part Quality and Mechanical Properties for DMLS and SLM with Iron-Based Materials,, International Journal of Advanced Manufacturing Technology, vol. 60, pp.601-610, (2012).

DOI: 10.1007/s00170-011-3643-5

Google Scholar

[99] M. Król, M. Kujawa, L. A. Dobrzański, and T. Tański, Influence of Technological Parameters on Additive Manufacturing Steel Parts in Selective Laser Sintering,, Archives of Materials Science and Engineering, vol. 67, pp.84-92, (2014).

Google Scholar

[100] N. A. Kistler, Characterization of Inconel 718 Fabricated through Powder Bed Fusion Additive Manufacturing,, B.Sc. Thesis, Materials Science and Engineering, Pennsylvania State University, USA, (2015).

Google Scholar

[101] J. J. Lewandowski and M. Seifi, Metal Additive Manufacturing: A Review of Mechanical Properties,, Annual Review of Materials Research, vol. 46, pp.151-186, (2016).

DOI: 10.1146/annurev-matsci-070115-032024

Google Scholar

[102] W. E. Frazier, Metal Additive Manufacturing: A Review,, Journal of Materials Engineering and Performance, vol. 23, pp.1917-1928, (2014).

Google Scholar

[103] X. Gong and K. Chou, Microstructures of Inconel 718 by Slective Laser Melting,, in TMS 2015 Annual Meeting Supplemental Proceedings, Orlando, Florida, USA, 2015, pp.461-468.

DOI: 10.1007/978-3-319-48127-2_58

Google Scholar

[104] H. Y. Song, Multi-Scale Microstructure Characterization for Improved Understanding of Microstructure-Property Relationship in Additive Manufacturing , PhD, Welding Engineering, Ohio State University, Ohio, USA, (2016).

Google Scholar

[105] C. Qiu, N. J. E. Adkins, and M. M. Attallah, Selective Laser Melting of Invar 36: Microstructure and Properties,, Acta Materialia, vol. 103, pp.382-395, (2016).

DOI: 10.1016/j.actamat.2015.10.020

Google Scholar

[106] P. Hanzl, M. Zetek, T. Bakša, and T. Kroupa, The Influence of Processing Parameters on the Mechanical Properties of SLM Parts,, Procedia Engineering, vol. 100, pp.1405-1413, (2015).

DOI: 10.1016/j.proeng.2015.01.510

Google Scholar

[107] F. Górski, W. Kuczko, and R. Wichniarek, Influence of Process Parameters on Dimensional Accuracy of Parts Manufactured Using Fused Deposition Modelling Technology,, Advances in Science and Technology Research Journal, vol. 7, pp.27-35, (2013).

DOI: 10.5604/20804075.1062340

Google Scholar

[108] D. L. Bourell, M. C. Leu, and D. W. Rosen, Roadmap for Additive Manufacturing: Identify the Future of Freeform Processing,, USA2009.

Google Scholar