Nanowear of Multilayer [(TiCx/Ti/C)÷a-C]n Coatings

Article Preview

Abstract:

Hard multilayer coatings are technologically promising materials for reducing wear of tribological parts. Multilayer coatings with a systematic alternation of the pair [(TiCx/Ti/C)÷(a-C)] were deposited on stainless and tool steel by the PVD technique. Hardness (H), elasticity modulus (E) and critical cracking load (Pcr) were determined by the nanoindentation method. Nanofrictional wear test was conducted under multipass sliding of a diamond indenter (Ø 50 nm) under constant load. The specific coefficient of nanofrictional wear of [(TiCx/Ti/C)÷(a-C)]n with different composition of titanium-containing layers was determined. The nanofrictional wear rate of [(TiCx/Ti/C)÷a-C]n depends on the elastic and plastic characteristics of multilayer coating as a whole. Coatings having H3/E2 > 0.12 and Pcr > 58 mN demonstrate low wear rate.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

153-159

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N. Kumar, G. Natarajan, R. Dumpala, R. Pandian, A. Bahuguna, S.K. Srivastava, T.R. Ravindran, S. Rajagopalan, S. Dash, A.K. Tyagi, M.S.R. Rao, Microstructure and phase composition dependent tribological properties of TiC/a-C nanocomposite thin films, Surf. Coat. Technol. 258 (2014).

DOI: 10.1016/j.surfcoat.2014.08.038

Google Scholar

[2] A.B. Vladimirov, S.A. Plotnikov, I.Sh. Trakhtenberg, A.P. Rubshtein, E. G. Volkova, Nanocomposite Films Prepared by Arc-Plasma Deposition of Titanium and Carbon, Prot. Met. Phys. Chem. Surf. 51 (2015) 230–233.

DOI: 10.1134/s2070205115020197

Google Scholar

[3] I.Sh. Trakhtenberg, N.V. Gavrilov, D.R. Emlin, S.A. Plotnikov, A.B. Vladimirov, E.G. Volkova, A.P. Rubshtein, Nanocomposite vacuum-Arc TiC/a-C:H coatings prepared using an additional ionization of acetylene, Phys. Metals Metallogr. 115 (2014).

DOI: 10.1134/s0031918x14070102

Google Scholar

[4] A.P. Rubshtein, A.B. Vladimirov, Yu.V. Korkh, Yu.S. Ponosov, S.A. Plotnikov, The composition, structure and surface properties of the titanium - carbon coatings prepared by PVD technique, Surf. Coat. Technol. 309 (2017) 680–686.

DOI: 10.1016/j.surfcoat.2016.11.020

Google Scholar

[5] A.V. Bondarev, Ph.V. Kiryukhantsev-Korneev, D.A. Sidorenko, D.V. Shtansky, A new insight into hard low friction MoCN–Ag coatings intended for applications in wide temperature range, Mater. Des. 93 (2016) 63-72.

DOI: 10.1016/j.matdes.2015.12.131

Google Scholar

[6] A.E. Kudryashev, A.Y. Potanin, D.N. Lebedev, I.V. Sukhorukova, D.V. Shtansky, E.A. Levashov, Structure and properties of Cr-Al-Si-B coatings produced by pulsed elektrospark deposition on a nickel alloy, Surf. Coat. Technol. 285 (2016) 278–288.

DOI: 10.1016/j.surfcoat.2015.11.052

Google Scholar

[7] M. Magnuson, E. Lewin, L. Hultman, U. Jansson, Electronic structure and chemical bonding of nanocrystalline-TiC/amorphous-C nanocomposites, Phys. Rev. B 80 (2009) 235108.

DOI: 10.1103/physrevb.80.235108

Google Scholar

[8] I.C. Müller, J. Sharp, W. M. Rainforth, P. Hovsepian, A. Ehiasarian, Tribological response and characterization of Mo-W doped DLC coating, Wear 376-377(B) (2017) 1622-1629.

DOI: 10.1016/j.wear.2016.11.036

Google Scholar

[9] Y.H. Yang, F.B. Wu, Microstructure evolution and protective properties of TaN multilayer coatings, Surf. Coat. Technol. 308 (2016) 108–114.

DOI: 10.1016/j.surfcoat.2016.05.091

Google Scholar

[10] J.B. Cai, X.L. Wang, W.Q. Bai, D.H. Wang, C.D. Gu, J.P. Tu, Microstructure, mechanical and tribological properties of a-C/a-C:Ti nanomultilayer film, Surf. Coat. Technol. 232 (2013) 403-411.

DOI: 10.1016/j.surfcoat.2013.05.042

Google Scholar

[11] R. Chen, J.P. Tu, D.G. Liu, Y.L. Yu, S.X. Qu, C.D. Gu, Structural and mechanical properties of TaN/a-CNx multilayer films, Surf. Coat. Technol. 206 (2012) 2242–2248.

DOI: 10.1016/j.surfcoat.2011.09.072

Google Scholar

[12] B. Bouaouina, A. Besnard, S.E. Abaidia, F. Haid, Residual stress, mechanical and microstructure properties of multilayer Mo2N/CrN coating produced by R.F Magnetron discharge, Appl. Surf. Sci. 395 (2017) 117–121.

DOI: 10.1016/j.apsusc.2016.04.024

Google Scholar

[13] V.C. Teles, J.D.B. de Mello, W.M. da Silva Jr. Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: Effect of interface roughness and of superficial flaws, Wear 376–377(B) (2017) 1691–1701.

DOI: 10.1016/j.wear.2017.01.116

Google Scholar

[14] W.Q. Bai, L.L. Li, Y.J. Xie, D.G. Liu, X.L. Wang, G. Jin, J.P. Tu, Corrosion and tribocorrosion performance of M (M=Ta, Ti) doped amorphous carbon multilayers in Hank's solution, Surf. Coat. Technol. 305 (2016) 11–22.

DOI: 10.1016/j.surfcoat.2016.07.078

Google Scholar

[15] W.Q. Bai, L.L. Li, X.L. Wang, F.F. He, D.G. Liu, G. Jin, J.P. Tu, Effects of Ti content on microstructure, mechanical and tribological properties of Ti-doped amorphous carbon multilayer films, Surf. Coat. Technol. 266 (2015) 70–78.

DOI: 10.1016/j.surfcoat.2015.02.024

Google Scholar

[16] P. Wiecinski, J. Smolik, H. Garbacz, J. Bonarski, A. Mazurkiewicz, K.J. Kurzydłowski, Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V, Surf. Coat. Technol. 309 (2017) 709–718.

DOI: 10.1016/j.surfcoat.2016.11.003

Google Scholar

[17] D. Dinesh Kumar, N. Kumar, S. Kalaiselvam, S. Dash, R. Jayavel, Wear resistant super-hard multilayer transition metal-nitride coatings, Surf. Interfaces 7 (2017) 74–82.

DOI: 10.1016/j.surfin.2017.03.001

Google Scholar

[18] I.Sh. Trakhtenberg, S.F. Plotnikov, I.N. Korneev, A.P. Rubshtein, A.B. Vladimirov, O.M. Bakunin, Improvement of the adhesion of diamond-like coatings to steel by a transition layer of variable composition, Phys. Metals Metallogr. 89(4) (2000).

Google Scholar

[19] K. Fu, Y. Yin, L. Chang, D. Shou, B. Zheng, L. Ye, Analysis on multiple ring-like cracks in thin amorphous carbon film on soft substrate under nanoindentation, J. Phys. D: Appl. Phys. 46 (2013) 505314.

DOI: 10.1088/0022-3727/46/50/505314

Google Scholar

[20] M. Tkadletz, N. Schalk, R. Daniel, J. Keckes, C. Czettl, C. Mitterer, Advanced characterization methods for wear resistant hard coatings: A review on recent progress, Surf. Coat. Technol. 285 (2016) 31–46.

DOI: 10.1016/j.surfcoat.2015.11.016

Google Scholar

[21] I.Sh. Trakhtenberg, A.B. Vladimirov, S.A. Plotnikov, A.P. Rubshtein, V.B. Vykhodets, O.M. Bakunin, Effect of adhesion strength of DLC to steel on the coating erosion mechanism, Diam. Relat. Mater. 10 (2001) 1824-1828.

DOI: 10.1016/s0925-9635(01)00430-7

Google Scholar

[22] S.D. Gorpinchenko, S.M. Klotsman, E.V. Kuzmina, S.A. Plotnikov, I.Sh. Trakhtenberg, Friction, wear and service properties of i-C coatings on steel, Diam. Relat. Mater. 1 (1992) 619-622.

DOI: 10.1016/0925-9635(92)90177-p

Google Scholar

[23] A.B. Vladimirov, I.Sh. Trakhtenberg, O.M. Bakunin, S.A. Plotnikov, A.P. Rubshtein, L.G. Korshunov, E.V. Kuzmina. The effect of substrate and DLC morphology on the tribological properties coating, Diam. Relat. Mater. 9 (2000) 838-842.

DOI: 10.1016/s0925-9635(00)00221-1

Google Scholar

[24] B.D. Beake, V.M. Vishnyakov, A.J. Harris, Nano-scratch testing of (Ti,Fe)Nx thin films on silicon, Surf. Coat. Technol. 309 (2017) 671–679.

DOI: 10.1016/j.surfcoat.2016.11.024

Google Scholar

[25] A. Leyland, A. Matthews, Design criteria for wear-resistant nanostructured glassy metal coatings, Surf. Coat. Technol. 177-178 (2004) 317–324.

DOI: 10.1016/j.surfcoat.2003.09.011

Google Scholar

[26] D.V. Shtanskii E.A. Levashov, S.A. Kulinich, J.J. Moore, Structure and physical-mechanical properties of nanostructured thin films, Phys. Solid State, 45 (2003) 1177-1184.

DOI: 10.1134/1.1583811

Google Scholar