[1]
Siddharth S, Senthilkumar T, Chandrasekar M. Development of processing windows for friction stir spot welding of aluminium Al5052 /copper C27200 dissimilar materials. Trans Nonferr Met Soc China. 2017; 27:1273-1284.
DOI: 10.1016/s1003-6326(17)60148-1
Google Scholar
[2]
Hansang K, Jayanta M, Khaled A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compd. 2017; 698:807-813.
DOI: 10.1016/j.jallcom.2016.12.179
Google Scholar
[3]
Xiao G, Yang QW, Li LX. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method. Trans Nonferr Met Soc China. 2016; 26:1096-1104.
DOI: 10.1016/s1003-6326(16)64206-1
Google Scholar
[4]
Zhang XH, Zhang WZ, Yuan YP, et al. Elevated temperature mechanical properties and fracture behaviors of the bond zone of aluminum matrix composites (Al-12Si/ABOw) with Al-12Si alloys. Mater Sci Eng A. 2017; 700:25-32.
DOI: 10.1016/j.msea.2017.05.116
Google Scholar
[5]
Maximilian S, Roy M, Thomas L. Anodic oxidation of the AlCu4Mg1 aluminium alloy with dynamic current control. Surf Coat Technol. 2016; 302:515-522.
DOI: 10.1016/j.surfcoat.2016.06.043
Google Scholar
[6]
Ma L, Zhang L, Zhao PY, et al. A new design of composites for thermal management: aluminium reinforced with continuous CVD diamond coated W spiral wires. Mater Des. 2016; 101:109-116.
DOI: 10.1016/j.matdes.2016.03.145
Google Scholar
[7]
Xiang N, Song RG, Zhao J, et al. Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminum alloy by micro-arc oxidation. Trans Nonferr Met Soc China. 2015; 25:3323-3328.
DOI: 10.1016/s1003-6326(15)63988-7
Google Scholar
[8]
Wang P, Wu T, Xiao YT, et al. Effect of Al2O3 micro-powder additives on the properties of micro-arc oxidation coatings formed on 6061 aluminum alloy. J Mater Eng Performance. 2016; 25:3972-3976.
DOI: 10.1007/s11665-016-2255-5
Google Scholar
[9]
Li J, Cai H, Xue X, et al. The outward-inward growth behaviour of microarc oxidation coatings in phosphate and silicate solution. Mater Lett. 2010; 64:2102–2104.
DOI: 10.1016/j.matlet.2010.06.053
Google Scholar
[10]
Wen L, Wang Y, Zhou Y, et al. Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process. Corros Sci. 2011; 53:473–480.
DOI: 10.1016/j.corsci.2010.09.061
Google Scholar
[11]
Tang H, Han Y, Wu T, et al. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Appl Surf Sci. 2017; 400:391-404.
DOI: 10.1016/j.apsusc.2016.12.216
Google Scholar
[12]
Mosab K, Yong HL, Young GK. Incorporation of MoO2 and ZrO2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Mater Lett. 2016; 182:260-263.
DOI: 10.1016/j.matlet.2016.07.009
Google Scholar
[13]
Kim MS, Ryu JJ, Sung YM. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem Commun. 2007; 9:1886-1891.
DOI: 10.1016/j.elecom.2007.04.023
Google Scholar
[14]
Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999; 122:73-93.
Google Scholar
[15]
Ezhilselvi V., Nithin J., Balaraju JN, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf Coat Technol. 2016; 288:221-229.
DOI: 10.1016/j.surfcoat.2016.01.040
Google Scholar
[16]
Martin J, Melhem A, Shchedrina I, et al. Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surf Coat Technol. 2013; 221:70-76.
DOI: 10.1016/j.surfcoat.2013.01.029
Google Scholar
[17]
Xin SG, Song LX, Zhao QG, et al. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminium alloy prepared by micro-arc oxidation process. Thin Solid Films. 2006; 515:623-332.
DOI: 10.1016/j.tsf.2005.12.087
Google Scholar
[18]
Wang P, Li JP, Guo YC, et al. Effect of zirconia sol on the microstructures and thermal-protective properties of PEO coating on a cast Al-12Si piston alloy. J Alloys Compd. 2016; 657:703-710.
DOI: 10.1016/j.jallcom.2015.10.139
Google Scholar
[19]
Dou JH, Gu GC, Chen CZ. Effects of calcium salts on microstructure and corrosion behavior of micro-arc oxidation coatings on Mg-2Zn-1Ca-0.8 Mn alloy. Mater Lett. 2017; 196:42-45.
DOI: 10.1016/j.matlet.2017.03.028
Google Scholar
[20]
Bahramian A, Raeissi K, Hakimizad A. An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating. Appl Surf Sci. 2015; 351:13-26.
DOI: 10.1016/j.apsusc.2015.05.107
Google Scholar
[21]
Ma HJ, Li DL, Liu C, et al. An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy. Surf Coat Technol. 2015; 266:151-159.
DOI: 10.1016/j.surfcoat.2015.02.033
Google Scholar
[22]
Gu WC, Lv GH, Huan C, et al. Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH. J Mater Process Technol. 2007; 182:28-33.
DOI: 10.1016/j.jmatprotec.2006.07.002
Google Scholar
[23]
Tang MQ, Feng ZQ, Li G, et al. High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes. Surf Coat Technol. 2015; 264:105-113.
DOI: 10.1016/j.surfcoat.2015.01.013
Google Scholar