Robust Micro Arc Oxidation Coatings on 6061 Aluminum Alloys via Surface Thickening and Microvoid Reducing Approach

Article Preview

Abstract:

The hardness and wear resistance of micro arc oxidation (MAO) ceramic coatings were influenced by phase compositions, surface thickness, porosity and microcracks. In this work, ceramic coatings with enhanced microhardness and friction resistance were fabricated on 6061 Al-alloy by increasing thickness and decreasing porosity through adding sodium hexametaphosphate ((NaPO3)6) as additive in silicate-based electrolyte. Surface morphologies and microhardness of the as-fabricated MAO coatings were evaluated using scanning electron microscope (SEM) and thickness meter. As a binary additive, the addition of (NaPO3)6 in electrolytes can obviously change the surface morphologies, thickness and microhardness of the resultant MAO coatings.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

148-152

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Siddharth S, Senthilkumar T, Chandrasekar M. Development of processing windows for friction stir spot welding of aluminium Al5052 /copper C27200 dissimilar materials. Trans Nonferr Met Soc China. 2017; 27:1273-1284.

DOI: 10.1016/s1003-6326(17)60148-1

Google Scholar

[2] Hansang K, Jayanta M, Khaled A, et al. Graphene oxide-reinforced aluminum alloy matrix composite materials fabricated by powder metallurgy. J Alloys Compd. 2017; 698:807-813.

DOI: 10.1016/j.jallcom.2016.12.179

Google Scholar

[3] Xiao G, Yang QW, Li LX. Modeling constitutive relationship of 6013 aluminum alloy during hot plane strain compression based on Kriging method. Trans Nonferr Met Soc China. 2016; 26:1096-1104.

DOI: 10.1016/s1003-6326(16)64206-1

Google Scholar

[4] Zhang XH, Zhang WZ, Yuan YP, et al. Elevated temperature mechanical properties and fracture behaviors of the bond zone of aluminum matrix composites (Al-12Si/ABOw) with Al-12Si alloys. Mater Sci Eng A. 2017; 700:25-32.

DOI: 10.1016/j.msea.2017.05.116

Google Scholar

[5] Maximilian S, Roy M, Thomas L. Anodic oxidation of the AlCu4Mg1 aluminium alloy with dynamic current control. Surf Coat Technol. 2016; 302:515-522.

DOI: 10.1016/j.surfcoat.2016.06.043

Google Scholar

[6] Ma L, Zhang L, Zhao PY, et al. A new design of composites for thermal management: aluminium reinforced with continuous CVD diamond coated W spiral wires. Mater Des. 2016; 101:109-116.

DOI: 10.1016/j.matdes.2016.03.145

Google Scholar

[7] Xiang N, Song RG, Zhao J, et al. Microstructure and mechanical properties of ceramic coatings formed on 6063 aluminum alloy by micro-arc oxidation. Trans Nonferr Met Soc China. 2015; 25:3323-3328.

DOI: 10.1016/s1003-6326(15)63988-7

Google Scholar

[8] Wang P, Wu T, Xiao YT, et al. Effect of Al2O3 micro-powder additives on the properties of micro-arc oxidation coatings formed on 6061 aluminum alloy. J Mater Eng Performance. 2016; 25:3972-3976.

DOI: 10.1007/s11665-016-2255-5

Google Scholar

[9] Li J, Cai H, Xue X, et al. The outward-inward growth behaviour of microarc oxidation coatings in phosphate and silicate solution. Mater Lett. 2010; 64:2102–2104.

DOI: 10.1016/j.matlet.2010.06.053

Google Scholar

[10] Wen L, Wang Y, Zhou Y, et al. Microstructure and corrosion resistance of modified 2024 Al alloy using surface mechanical attrition treatment combined with microarc oxidation process. Corros Sci. 2011; 53:473–480.

DOI: 10.1016/j.corsci.2010.09.061

Google Scholar

[11] Tang H, Han Y, Wu T, et al. Synthesis and properties of hydroxyapatite-containing coating on AZ31 magnesium alloy by micro-arc oxidation. Appl Surf Sci. 2017; 400:391-404.

DOI: 10.1016/j.apsusc.2016.12.216

Google Scholar

[12] Mosab K, Yong HL, Young GK. Incorporation of MoO2 and ZrO2 particles into the oxide film formed on 7075 Al alloy via micro-arc oxidation. Mater Lett. 2016; 182:260-263.

DOI: 10.1016/j.matlet.2016.07.009

Google Scholar

[13] Kim MS, Ryu JJ, Sung YM. One-step approach for nano-crystalline hydroxyapatite coating on titanium via micro-arc oxidation. Electrochem Commun. 2007; 9:1886-1891.

DOI: 10.1016/j.elecom.2007.04.023

Google Scholar

[14] Yerokhin AL, Nie X, Leyland A, et al. Plasma electrolysis for surface engineering. Surf Coat Technol. 1999; 122:73-93.

Google Scholar

[15] Ezhilselvi V., Nithin J., Balaraju JN, et al. The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy. Surf Coat Technol. 2016; 288:221-229.

DOI: 10.1016/j.surfcoat.2016.01.040

Google Scholar

[16] Martin J, Melhem A, Shchedrina I, et al. Effects of electrical parameters on plasma electrolytic oxidation of aluminium. Surf Coat Technol. 2013; 221:70-76.

DOI: 10.1016/j.surfcoat.2013.01.029

Google Scholar

[17] Xin SG, Song LX, Zhao QG, et al. Influence of cathodic current on composition, structure and properties of Al2O3 coatings on aluminium alloy prepared by micro-arc oxidation process. Thin Solid Films. 2006; 515:623-332.

DOI: 10.1016/j.tsf.2005.12.087

Google Scholar

[18] Wang P, Li JP, Guo YC, et al. Effect of zirconia sol on the microstructures and thermal-protective properties of PEO coating on a cast Al-12Si piston alloy. J Alloys Compd. 2016; 657:703-710.

DOI: 10.1016/j.jallcom.2015.10.139

Google Scholar

[19] Dou JH, Gu GC, Chen CZ. Effects of calcium salts on microstructure and corrosion behavior of micro-arc oxidation coatings on Mg-2Zn-1Ca-0.8 Mn alloy. Mater Lett. 2017; 196:42-45.

DOI: 10.1016/j.matlet.2017.03.028

Google Scholar

[20] Bahramian A, Raeissi K, Hakimizad A. An investigation of the characteristics of Al2O3/TiO2 PEO nanocomposite coating. Appl Surf Sci. 2015; 351:13-26.

DOI: 10.1016/j.apsusc.2015.05.107

Google Scholar

[21] Ma HJ, Li DL, Liu C, et al. An investigation of (NaPO3)6 effects and mechanisms during micro-arc oxidation of AZ31 magnesium alloy. Surf Coat Technol. 2015; 266:151-159.

DOI: 10.1016/j.surfcoat.2015.02.033

Google Scholar

[22] Gu WC, Lv GH, Huan C, et al. Investigation of morphology and composition of plasma electrolytic oxidation coatings in systems of Na2SiO3–NaOH and (NaPO3)6–NaOH. J Mater Process Technol. 2007; 182:28-33.

DOI: 10.1016/j.jmatprotec.2006.07.002

Google Scholar

[23] Tang MQ, Feng ZQ, Li G, et al. High-corrosion resistance of the microarc oxidation coatings on magnesium alloy obtained in potassium fluotitanate electrolytes. Surf Coat Technol. 2015; 264:105-113.

DOI: 10.1016/j.surfcoat.2015.01.013

Google Scholar