Composition, Structure and Mechanical Properties of CrAlC Films Deposited by Arc Sputtering Technique

Article Preview

Abstract:

A focus point in this work was the research of the influence of deposition condition on properties of CrAlC films. CrAlC films were deposited by arc sputtering technique using arc sputtering of Cr-Al target and pulse arc sputtering of graphite target at different frequency. The multilayer [(CrAlC)+(a-C)]n coatings were also obtained and investigated. Multilayer [(CrAlC)+(a-C)]n were deposited with a systematic alternation of the pair [(CrAlC)+(a-C)], where a-C is the amorphous carbon layer. The structure, mechanical properties and fracture toughness of CrAlC films depend on pulse frequencies of the graphite sputtering. With increasing pulse frequency, the film structure changes from uniformly amorphous to amorphous with nanograins, the hardness of the films increases, the critical load of crack formation and film peeling tend to decrease. It is shown that a decrease in the thickness of the layers in [(CrAlC)+(a-C)]n leads to an increase in the crack resistance.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

160-166

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M.W. Barsoum, The Mn+1AXn phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem. 28 (2000) 201–281.

DOI: 10.1016/s0079-6786(00)00006-6

Google Scholar

[2] P. Eklund, M. Beckers, U. Jansson, H. Högberg, L. Hultman, The Mn+1AXn phases: Materials science and thin-film processing, Thin Solid Films 518 (2010) 1851–1878.

DOI: 10.1016/j.tsf.2009.07.184

Google Scholar

[3] A. Abdulkadhim, M. Baben, T. Takahashi, V. Schnabel, M. Hans, C. Polzer, P. Polcik, J. M. Schneider, Crystallization kinetics of amorphous Cr2AlC thin films, Surf. Coat. Technol. 206 (2011) 599–603.

DOI: 10.1016/j.surfcoat.2011.06.003

Google Scholar

[4] T. Wubian, K. Vanmeensel, P. Wang, G. Zhang, Y. Li, J. Vleugels, O. van der Biest, Synthesis and characterization Cr2AlC ceramics prepared by spark plasma sintering, Mater. Lett. 61 (2007) 4442–4445.

DOI: 10.1016/j.matlet.2007.02.023

Google Scholar

[5] V.B. Tian, Y.M. Wang, Y.M. Kan, G.-J. Zhang, Y.-X. Li, D.-S. Yan, Phase formation sequence of Cr2AlC ceramics starting from Cr–Al–C powders, Mater. Sci. Eng. A 443 (2007) 229–234.

DOI: 10.1016/j.msea.2006.08.064

Google Scholar

[6] M. Harsani, M. Sahul, P. Zackov, L. Caplovic, Study of cathode current effect on the properties of CrAlSiN coatings prepared by LARC, Vacuum 139 (2017) 1–8.

DOI: 10.1016/j.vacuum.2017.01.029

Google Scholar

[7] J.J. Li, Y.H. Qian, D. Niu, M.M. Zhang, Z.M. Liu, M.S. Li, Phase formation and microstructure evolution of arc ion deposited Cr2AlC coating after heat treatment, Appl. Surf. Sci. 263 (2012) 457–464.

DOI: 10.1016/j.apsusc.2012.09.082

Google Scholar

[8] J.-P. Palmquist, U. Jansson, T. Seppänen, P.U.A. Persson, J. Birch, L. Hultman, P. Isberg, Magnetron sputtered epitaxial single-phase Ti3SiC2 thin films, Appl. Phys. Lett. 81 (2002) 835–837.

DOI: 10.1063/1.1494865

Google Scholar

[9] O. Berger, C. Leyens, S. Heinze, R. Boucher, M. Ruhnow, Characterization of Cr–Al–C and Cr–Al–C–Y films synthesized by High Power Impulse Magnetron Sputtering at a low deposition temperature, Thin Solid Films 580 (2015) 6–11.

DOI: 10.1016/j.tsf.2015.03.008

Google Scholar

[10] F. Cao, P. Munroe, Z. Zhou, Z. Xie, Mechanically robust TiAlSiN coatings prepared by pulsed-DC magnetron sputtering system: Scratch response and tribological performance, Thin Solid Films 645 (2018) 222–230.

DOI: 10.1016/j.tsf.2017.10.058

Google Scholar

[11] T.-C. Fu, G.-W. Li. Effect of Al content on the properties of Cr1-xAlxC films prepared by RF reactive magnetron sputtering, Appl. Surf. Sci. 253 (2006) 1260–1264.

DOI: 10.1016/j.apsusc.2006.01.069

Google Scholar

[12] M. Hopfeld, R. Grieseler, A. Vogel, H. Romanus, P. Schaaf, Tribological behavior of selected Mn+1AXn phase thin films on silicon substrates, Surf. Coat. Technol. 257 (2014) 286–294.

DOI: 10.1016/j.surfcoat.2014.08.034

Google Scholar

[13] Z.M. Sun, Progress in research and development on MAX phases: a family of layered compounds, Int. Mater. Rev. 56 (3) (2011) 143–166.

Google Scholar

[14] C. Walter, D.P. Sigumonrong, T. EI-Raghy, J.M. Schneider, Towards large area deposition of Cr2AlC on steel, Thin Solid Films 515 (2006) 389–393.

DOI: 10.1016/j.tsf.2005.12.219

Google Scholar

[15] J.M. Schneider, Z. Sun, R. Mertens, F. Uestel, R. Ahuja, Ab initio calculations and experimental determination of the structure of Cr2AlC, Solid State Communications, 130 (2004) 445–449.

DOI: 10.1016/j.ssc.2004.02.047

Google Scholar

[16] R. Mertens, Z. Sun, D. Music, J.M. Schneider, Effect of the Composition on the Structure of Cr-Al-C Investigated by Combinatorial Thin Film Synthesis and ab Initio Calculations, Adv. Eng. Mat. 6 (2004) 903–907.

DOI: 10.1002/adem.200400096

Google Scholar

[17] A.P. Rubshtein, A.B. Vladimirov, Yu.V. Korkh, Yu.S.Ponosov, S.A. Plotnikov, The composition, structure and surface properties of the titanium - carbon coatings prepared by PVD technique, Surf. Coat. Technol. 309 (2017) 680-686.

DOI: 10.1016/j.surfcoat.2016.11.020

Google Scholar

[18] M. Tkadletz, N. Schalk, R. Daniel, J. Keckes, C. Czettl, C. Mitterer, Advanced characterization methods for wear resistant hard coatings: A review on recent progress, Surf. Coat. Technol. 285 (2016) 31–46.

DOI: 10.1016/j.surfcoat.2015.11.016

Google Scholar

[19] V.C. Teles, J.D.B. de Mello, W.M. da Silva, Abrasive wear of multilayered/gradient CrAlSiN PVD coatings: Effect of interface roughness and of superficial flaws, Wear 376–377(B) (2017) 1691–1701.

DOI: 10.1016/j.wear.2017.01.116

Google Scholar

[20] S.A. Plotnikov, A.B. Vladimirov, A.B. Rinkevich, A.P. Rubshtein, J. Zhang, V.A. Zavalishin, N.A. Sokolkina, Wear-resistance of nanostructured coatings based on diamond-like carbon and compounds of titanium with carbon, Journal of Physics: Conf. Series 857 (2017).

DOI: 10.1088/1742-6596/857/1/012034

Google Scholar

[21] W.Q. Bai, L.L. Li, Y.J. Xie, D.G. Liu, X.L. Wang, G. Jin, J.P. Tu, Corrosion and tribocorrosion performance of M (M=Ta, Ti) doped amorphous carbon multilayers in Hank's solution, Surf. Coat. Technol. 305 (2016) 11–22.

DOI: 10.1016/j.surfcoat.2016.07.078

Google Scholar

[22] P. Wiecinski, J. Smolik, H. Garbacz, J. Bonarski, A. Mazurkiewicz, K.J. Kurzydłowski, Microstructure and properties of metal/ceramic and ceramic/ceramic multilayer coatings on titanium alloy Ti6Al4V, Surf. Coat. Technol. 309 (2017) 709–718.

DOI: 10.1016/j.surfcoat.2016.11.003

Google Scholar