Self-Assembled Growth of Tail-Like Cluster Composed of Flower-Shaped ZnO Microwires by Chemical Vapor Deposition Method

Article Preview

Abstract:

A self-assembled ZnO tail-like cluster (TC) had been successfully synthesized by a simple chemical vapor deposition method. Scanning electron microscopy observations show that ZnO TC is composed of bushy ZnO microwires with flower-shaped cross sections. Long and narrow furrows can be clearly observed on the surface of the ZnO TC. A possible growth model is proposed to discuss the formation mechanism. The analytical result indicates that the flower-shaped ZnO microwires are formed by the lateral coalescence of ZnO wires at high temperature. The room temperature PL spectrum shows a prominent UV emission band around 380 nm, and no green emission is found, implying that the unique flower-shaped ZnO microwires have high optical quality. This controlled growth of ZnO TC may have implication for potential applications in novel optoelectronic micro/nanodevices in the near future.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

202-207

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] HU J.T., ODOM T.W., LIEBER C.M.: Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes,, Acc. Chem. Res., 1999, 32, pp.435-445.

DOI: 10.1021/ar9700365

Google Scholar

[2] BAXTER J.B., WALKER A.M., VAN OMMERING K., AYDIL E.S.: Synthesis and characterization of ZnO nanowires and their integration into dye-sensitized solar cells,, Nanotechnology, 2006, 17, pp. S304-S312.

DOI: 10.1088/0957-4484/17/11/s13

Google Scholar

[3] BAXTER J.B., AYDIL E.S.: Dye-sensitized solar cells based on semiconductor morphologies with ZnO nanowires,, Sol. Energy Mater. Sol. Cells, 2006, 90, pp.607-622.

DOI: 10.1016/j.solmat.2005.05.010

Google Scholar

[4] EMANETOGLU N.W., GORLA C., LIU Y., LIANG S., LU Y.: Epitaxial ZnO piezoelectric thin films for saw filters,, Mater. Sci. Semicond. Process., 1999, 2, pp.247-252.

DOI: 10.1016/s1369-8001(99)00022-0

Google Scholar

[5] RYU Y.R., LEE T.S., LUBGUBAN J.A., WHITE H.W., KIM B.J., PARK Y.S., YOUN C.J.: Next generation of oxide photonic devices: ZnO-based ultraviolet light emitting diodes,, Appl. Phys. Lett., 2006, 88, p.241108.

DOI: 10.1063/1.2210452

Google Scholar

[6] HWANG D.K., KANG S.H., LIM J.H., YANG E.J., OH J.Y., YANG J.H., PARK S.J.: p-ZnO/n-GaN heterostructure ZnO light-emitting diodes,, Appl. Phys. Lett., 2005, 86, p.222101.

DOI: 10.1063/1.1940736

Google Scholar

[7] WANG Z.L.: The new field of nanopiezotronics,, Mater. Today, 2007, 10, pp.20-28.

Google Scholar

[8] SUCHEA M., CHRISTOULAKIS S., MOSCHOVIS K., KATSARAKIS N., KIRIAKIDIS G.: ZnO transparent thin films for gas sensor applications,, Thin Solid Films, 2006, 515, pp.551-554.

DOI: 10.1016/j.tsf.2005.12.295

Google Scholar

[9] ROY S., BASU S.: Improved zinc oxide film for gas sensor applications,, Bull. Mater. Sci., 2002, 25, pp.513-515.

DOI: 10.1007/bf02710540

Google Scholar

[10] GAO P.X., WANG Z.L.: Self-assembled nanowire-nanoribbon junction arrays of ZnO,, J. Phys. Chem. B, 2002, 106, pp.12653-12658.

DOI: 10.1021/jp0265485

Google Scholar

[11] LAO J.Y., WEN J.G., REN Z.F.: Hierarchical ZnO nanostructures,, Nano Lett., 2002, 2, pp.1287-1291.

DOI: 10.1021/nl025753t

Google Scholar

[12] LIU F., CAO P.J., ZHANG H.R., LI J.Q., GAO H.J.: Controlled self-assembled nanoaeroplanes, nanocombs, and tetrapod-like networks of zinc oxide,, Nanotechnology, 2004, 15, pp.949-952.

DOI: 10.1088/0957-4484/15/8/013

Google Scholar

[13] FANG Z., TANG K.B., SHEN G.Z., CHEN D., KONG R., LEI S.J.: Self-assembled ZnO 3D flowerlike nanostructures,, Mater. Lett., 2006, 60, pp.2530-2533.

DOI: 10.1016/j.matlet.2006.01.034

Google Scholar

[14] HU J.Q., LI Q., WONG N.B., LEE C.S., LEE S.T.: Synthesis of uniform hexagonal prismatic ZnO whiskers,, Chem. Mater., 2002, 14, pp.1216-1219.

DOI: 10.1021/cm0107326

Google Scholar

[15] WANG L.S., ZHANG X.Z., ZHAO S.Q., ZHOU G.Y., ZHOU Y.L., QI J.J.: Synthesis of well-aligned ZnO nanowires by simple physical vapor deposition on c-oriented ZnO thin films without catalysts or additives,, Appl. Phys. Lett., 2005, 86, p.24108.

DOI: 10.1063/1.1851607

Google Scholar

[16] JEONG J.S., LEE J.Y., CHO J.H., SUH H.J., LEE C.J.: Single-crystalline ZnO microtubes formed by coalescence of ZnO nanowires using a simple metal-vapor deposition method,, Chem. Mater., 2005, 17, pp.2752-2756.

DOI: 10.1021/cm049387l

Google Scholar

[17] KONG Y.C., YU D.P., ZHANG B., FANG W., FENG S.Q.: Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,, Appl. Phys. Lett., 2001, 78, pp.407-409.

DOI: 10.1063/1.1342050

Google Scholar

[18] THONGTEM T., PHURUANGRAT A., THONGTEM S.: Characterization of nanostructured ZnO produced by microwave irradiation,, Ceram. Int., 2010, 36, pp.257-262.

DOI: 10.1016/j.ceramint.2009.07.027

Google Scholar

[19] SUN Y., KETTERSON J.B., WONG G.K.L.: Excitonic gain and stimulated ultraviolet emission in nanocrystalline zinc-oxide powder,, Appl. Phys. Lett., 2000, 77, pp.2322-2324.

DOI: 10.1063/1.1316069

Google Scholar

[20] ONG H.C., DU G.T.: The evolution of defect emissions in oxygen-deficient and -surplus ZnO thin films: the implication of different growth modes,, J. Cryst. Growth, 2004, 265, pp.471-475.

DOI: 10.1016/j.jcrysgro.2004.02.010

Google Scholar

[21] VANHEUSDEN K., SEAGER C.H., WARREN W.L., TALLANT D.R., CARUSO J., HAMPDENSMITH M.J., KODAS T.T.: Green photoluminescence efficiency and free-carrier density in ZnO phosphor powders prepared by spray pyrolysis,, J. Lumin., 1997, 75, pp.11-16.

DOI: 10.1016/s0022-2313(96)00096-8

Google Scholar