Preparation of Dispersed Y2O3-MgO Nanopowder from Stearate

Article Preview

Abstract:

Dispersed Y2O3-MgO nanopowder was synthesized by calcining the stearate. XRD, TG-DTA, FT-IR, BET and FE-SEM were employed to analyze The formation mechanism of the precursor and the Y2O3-MgO nanopowder. Pure and dispersed Y2O3-MgO nanopowder with an average particle size of 40 nm was produced by calcining the precursor at 600 °C. The particle size increases to about 70 nm with the increase of the calcination temperature to 700 °C. In the preparation of Y2O3-MgO from stearate, no water medium is involved, thus capillarity force and bridging of adjacent particles by hydrogen bonds can be avoided, resulting in good dispersion of the particles. The dispersed Y2O3-MgO nanopowder prepared in this work has potential application in infrared transparent ceramic materials.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 279)

Pages:

208-213

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Cai A., Tan J. F., A broadband transparent window in a continuous metal film coated with double layer hybrid dielectric gratings, Opt. Commun., 403 (15) (2017), 193-196.

DOI: 10.1016/j.optcom.2017.07.013

Google Scholar

[2] G. K. Dalapati, A. K. Kushwaha, M. Sharma, V. Suresh, S. Shannigrahi, S. Zhuk and S. Masudy-Panahde, Transparent heat regulating (THR) materials and coatings for energy saving window applications: Impact of materials design, micro-structural, and interface quality on the THR performance, Prog. Mater. Sci., 95(2018).

DOI: 10.1016/j.pmatsci.2018.02.007

Google Scholar

[3] Li C., Xie T. Dai J. Kou H. Pan Y. and Li J., Hot-pressing of zinc sulfide infrared transparent ceramics from nanopowders synthesized by the solvothermal method, Ceram. Int., 44(1) (2018), 747-752.

DOI: 10.1016/j.ceramint.2017.09.242

Google Scholar

[4] J. S. McCloy, B. J. Riley and D. A. Pierce Infrared-transparent glass ceramics: An exploratory study, J. Non-Cryst. Solids, 410(15) (2015), 160-173.

DOI: 10.1016/j.jnoncrysol.2014.11.040

Google Scholar

[5] J. Dupont, G. Mignot, D. Paladino and H. M. Prasser, Mid wave infrared thermography of water films in condensing and evaporating environments, Nucl. Eng. Des., 13 (2017).

DOI: 10.1016/j.nucengdes.2017.06.027

Google Scholar

[6] C. T. Mathew, S. Solomon and J. K. Thomas, Structural, Optical and Vibrational Characterization of Infrared-transparent Nanostructured MgAl2O4 Synthesized by a Modified Combustion Technique, Mater. Today: Proc., 2 (3) (2015), 954-958.

DOI: 10.1016/j.matpr.2015.06.015

Google Scholar

[7] M. H. Moghim, M. H. Paydar. Hot-pressing of bimodally distributed magnesium fluoride powder, Infrared Phys. Technol., 53 (6) (2010), 430-433.

DOI: 10.1016/j.infrared.2010.07.011

Google Scholar

[8] Liu X. J., Chen F., Zhang F., Zhang H. L. and Huang Z.R., Hard transparent AlON ceramic for visible/IR windows, Int. J. Refract. Met. H., 39 (2013), 38-43.

DOI: 10.1016/j.ijrmhm.2013.01.021

Google Scholar

[9] R. Chaim, A. Shlayer and C. Estournes, Densification of nanocrystalline Y2O3 ceramic powder by spark plasma sintering, J. Eur. Ceram Soc, 29 (1) (2009), 91-98.

DOI: 10.1016/j.jeurceramsoc.2008.05.043

Google Scholar

[10] R. Sadangi, V. Shukla, J. F. Al-Sharab, B. H. Kear, T. Stefanik, and R. Gentilman, Transparent Yttria-Based Nanocomposites, Proc. Int. J. Offshore Polar Eng. Conf., 17(4) (2007), 2912-5.

DOI: 10.1557/proc-1056-hh08-44

Google Scholar

[11] S.Ghorbani, M. R. Loghman-Estarki, R. ShojaRazavi and A. Alhaji, A new method for the fabrication of MgO-Y2O3 composite nanopowder at low temperature based on bioorganic material, Ceram. Int., 44 (3) (2018), 2814-2821.

DOI: 10.1016/j.ceramint.2017.11.025

Google Scholar

[12] Xie. J. X., Mao. X. J., Li. X. K., Jiang. B. X. and Zhang L., Influence of moisture absorption on the synthesis and properties of Y2O3-MgO nanocomposites, Ceram. Int., 43(1) (2017), 40-44.

DOI: 10.1016/j.ceramint.2016.08.117

Google Scholar

[13] B. Walkley, R. San Nicolas, M. A. Sani, S. A. Bernal, J. S. V Deventer and J. L. Provis, Structural evolution of synthetic alkali-activated CaO-MgO-Na2O-Al2O3-SiO2 materials is influenced by Mg content, Cem. Concr. Res., 99 (2017) 155-171.

DOI: 10.1016/j.cemconres.2017.05.006

Google Scholar

[14] S. Nam, M Lee, B. N. Kim, Y. Lee, S. Kang, Morphology Controlled Co-precipitation Method for Nano Structured Transparent MgAl2O4, Ceram. Int., 43 (17) (2017), 15352-15359.

DOI: 10.1016/j.ceramint.2017.08.075

Google Scholar

[15] Xu, G. G., Zhang, X. D., He, W., Liu, H. and Li, H., The study of surfactant application on synthesis of YAG nano-sized powders. Powder Technol. 163 (2006) 202-205.

DOI: 10.1016/j.powtec.2006.02.004

Google Scholar

[16] Kaliszewski, M. S. and Heuer, A. H., Alcohol interaction with zirconia powders. J. Am. Ceram. Soc. 73 (1990) 1504-1509.

DOI: 10.1111/j.1151-2916.1990.tb09787.x

Google Scholar