The Effect of Temperature and Time on the Formation of TiO2 (B) Nanowires via Hydrothermal Method

Article Preview

Abstract:

TiO2 (B) nanowires were prepared at 170 °C, 200 °C and 220 °C for 24 h via hydrothermal synthesis to evaluate the effect of temperature on phase composition and morphologies. The effect of reaction time: 24 and 72 h on the formation was also studied at 170 °C. All samples were calcined in air at 400 °C for 2 h. Phase identification was performed using X-ray diffraction (XRD) and morphologies was examined by a scanning electron microscope (SEM). It was found that hydrothermal temperature and time played an important role in defining TiO2 phase composition and its morphology. For 24 h hydrothermal synthesis, at low temperature of 170 °C, anatase TiO2 nanoparticles were formed, while at higher temperature of 200 and 220 °C, TiO2 (B) nanowires with averaged diameter of 49 nm and several micrometers in length were produced. Interestingly at 170 °C, by increasing reaction time to 72 h, anatase TiO2 nanoparticles were completely transformed to TiO2 (B) nanowires with averaged diameter of 74 nm and 2-4 micrometers in length.

You might also be interested in these eBooks

Info:

Periodical:

Solid State Phenomena (Volume 280)

Pages:

15-20

Citation:

Online since:

August 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] N.M.A. Hadia: J. Nanosci. Nanotechnol. Vol. 14 (2014), pp.5574-5580.

Google Scholar

[2] M.N. Asiah, M.H. Mamat, Z. Khusaimi, M.F. Achoi, S. Abdullah and M. Rusop: MEE. Vol. 108 (2013), pp.134-137.

DOI: 10.1016/j.mee.2013.02.010

Google Scholar

[3] A.G. Dylla, G. Henkelman and K.J. Stevenson: ACS. Vol. 46 (2013), pp.1104-1112.

Google Scholar

[4] Z. Liu, Y.G. Andreev, A.R. Armstrong, S. Brutti, Y. Ren and P.G. Bruce: MatInt. Vol. 23 (2013), pp.235-244.

Google Scholar

[5] J.M. Wu, H.C. Shih, W.T. Wu, Y.K. Tseng and I.C. Chen: J. Cryst. Growth. Vol. 281 (2005), pp.384-390.

Google Scholar

[6] L. Li, X. Qin, G. Wung, L. Qi, G. Du and Z. Hu: Appl. Surf. Sci. Vol. 257 (2011), pp.8006-8012.

Google Scholar

[7] Q. Kuang, C. Lao, Z.L. Wang, Z. Xie and L. Zheng: J. Am. Chem. Soc. Vol. 129 (2007), pp.6070-6071.

Google Scholar

[8] J.S. Lee, Y.I. Lee, H. Song, D.H. Jang and Y.H. Choa: Curr. Appl. Phys. Vol. 11 (2011), pp.5210-5214.

Google Scholar

[9] B.M. Wen, C.Y. Liu and Y. Liu: NJC. Vol. 29 (2005), pp.969-971.

Google Scholar

[10] J. Jitputti, Y. Suzuki, S. Yoshikawa: Catal. Commun. Vol.9 (2008), pp.1265-1271.

Google Scholar

[11] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: J. Power Sources. Vol. 146 (2005), pp.501-506.

Google Scholar

[12] Y.X. Zhang, G.H. Li, Y.X. Jin, Y. Zhang, J. Zhang and L.D. Zhang: Chem. Phys. Lett. Vol. 365 (2002), pp.300-304.

Google Scholar

[13] M. Wei, Z.M. Qi, M. Ichihara, I. Honma and H. Zhou: Chem. Phys. Lett. Vol. 424 (2006), pp.316-320.

Google Scholar

[14] A. Byeon, M. Boota, M. Beidaghi, K.V. Aken, J. W. Lee and Y. Gogotsi: Electrochem. Commun. Vol. 60 (2015), pp.199-203.

DOI: 10.1016/j.elecom.2015.09.004

Google Scholar

[15] A.R. Armstrong, G. Armstrong, J. Canales and P.G. Bruce: Angew. Chem. Int. Ed. Vol. 43 (2004), pp.2286-2288.

DOI: 10.1002/anie.200353571

Google Scholar

[16] A.R. Armstrong, G. Armstrong, J. Canales and P. G. Bruce: Adv. Mater. Vol.17 (2005), pp.862-865.

Google Scholar

[17] T. Kasuga, M. Hiramatsu, A. Hoson, T. Sekino and K. Niihara: Adv. Mater. Forum Vol. 15 (1999), pp.1307-1311.

DOI: 10.1002/(sici)1521-4095(199910)11:15<1307::aid-adma1307>3.0.co;2-h

Google Scholar

[18] H. Peng, G. Li and Z. Zhang: Mater. Lett. Vol. 59 (2005), pp.1142-1145.

Google Scholar

[19] J. Hu, H. Li, Q. Wu, Y. Zhao and Q. Jiao: Chem. Eng. J. Vol. 263 (215), pp.144-150.

Google Scholar

[20] M. Abdullah and S.K. Kamarudin: J. Anal. Sci. MY. Vol. 20(6) (2016), pp.1405-1412.

Google Scholar

[21] P. Potrolniczak and M. Walkowiak: Open Chem. Vol. 13 (2015), pp.75-81.

Google Scholar

[22] J. Hou, R. Wu, P. Zhao, A. Chang, G. Ji, B. Gao and Q. Zhao: Mater. Lett. Vol.100 (2013), pp.173-176.

Google Scholar

[23] R. Jiang, X. Luo and X. Wen: Int. J. Electrochem. Sci. Vol.11 (2016), pp.9471-9480.

Google Scholar

[24] G.C. Collazzo, S.L. Jahn, N.L.V. Carreno and E.L. Foletto: J. Chem. Eng. Brazil. Vol. 28 (2011), pp.265-272.

Google Scholar